Hanpeng Gao , Zetian Xing , Siyu Chang , Fangyi Zhao , Honglin Zhang , Zong Meng , Zhiwu Han , Yan Liu
{"title":"Bioinspired multifunctional antifogging surfaces: Progress, AI design and challenges","authors":"Hanpeng Gao , Zetian Xing , Siyu Chang , Fangyi Zhao , Honglin Zhang , Zong Meng , Zhiwu Han , Yan Liu","doi":"10.1016/j.pmatsci.2025.101530","DOIUrl":null,"url":null,"abstract":"<div><div>Over the past few decades, various antifogging strategies and preparation methods have been proposed. Unfortunately, a surface with a single antifogging function cannot achieve a wide range of practical applications. For example, medical endoscopes require antifogging and antibacterial capabilities to improve diagnostic accuracy and safety. Inspired by the near-perfect multifunctional properties of natural creatures, antifogging materials with specific functions have drawn more and more attention owing to their promising and wide applications. However, the design of bioinspired antifogging surfaces with broad applicability still presents some challenges, such as the integration of multifunctional properties, and the optimization of preparation routes. In this review, beginning with the fogging mechanism and wettability theory, the latest antifogging surface materials and pattern designs are analyzed in detail and critically evaluated. The natural biomaterials with multifunctional characteristics are summarized, and the integration mechanism and design difficulties of the four multifunctional characteristics are then emphatically analyzed. Based on artificial intelligence (AI) assisted design optimization, we introduce the neural network into the bionic multifunction antifogging path realization for the first time and summarize the antifogging prototype and antifogging multifunction database. Finally, the challenges and future trends of bioinspired multifunction antifogging surfaces (MF-AFS) are presented.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"155 ","pages":"Article 101530"},"PeriodicalIF":40.0000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642525001082","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past few decades, various antifogging strategies and preparation methods have been proposed. Unfortunately, a surface with a single antifogging function cannot achieve a wide range of practical applications. For example, medical endoscopes require antifogging and antibacterial capabilities to improve diagnostic accuracy and safety. Inspired by the near-perfect multifunctional properties of natural creatures, antifogging materials with specific functions have drawn more and more attention owing to their promising and wide applications. However, the design of bioinspired antifogging surfaces with broad applicability still presents some challenges, such as the integration of multifunctional properties, and the optimization of preparation routes. In this review, beginning with the fogging mechanism and wettability theory, the latest antifogging surface materials and pattern designs are analyzed in detail and critically evaluated. The natural biomaterials with multifunctional characteristics are summarized, and the integration mechanism and design difficulties of the four multifunctional characteristics are then emphatically analyzed. Based on artificial intelligence (AI) assisted design optimization, we introduce the neural network into the bionic multifunction antifogging path realization for the first time and summarize the antifogging prototype and antifogging multifunction database. Finally, the challenges and future trends of bioinspired multifunction antifogging surfaces (MF-AFS) are presented.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.