Joseph R Rubin,Steven K Taylor,Sergei Rudchenko,Milan N Stojanovic,Henry Hess
{"title":"Single Molecule Kinetic Fingerprinting of Glycans on IgA1 Antibodies.","authors":"Joseph R Rubin,Steven K Taylor,Sergei Rudchenko,Milan N Stojanovic,Henry Hess","doi":"10.1021/acs.analchem.5c01488","DOIUrl":null,"url":null,"abstract":"Immunoglobulin A (IgA) nephropathy is the most common form of primary glomerulonephritis and is triggered by damage to glomeruli from deposition of complexes formed between glycosylated IgA1 antibodies that are \"galactose-deficient\" and antibodies directed to these aberrant proteins. Currently, galactose deficiencies are detected with ensemble measurements, e.g., via mass spectrometry or liquid chromatography, which only measure average glycan-IgA1 ratios, but cannot resolve heterogeneity of O-glycosylation between different IgA1 populations. To resolve these differences at the single molecule level, we developed an assay to detect the glycosylation state of individual IgA1 using single molecule fluorescence microscopy. By using fluorescence resonance energy transfer (FRET), high concentrations of fluorescently labeled probes with low binding rates can be employed to observe the binding of protein probes to surface adhered target molecules and obtain their kinetic fingerprints. We measured the binding and unbinding rates of jacalin (a lectin binding to O-linked glycans) to individual IgA1 molecules on a glass surface. Adding galactose decreased binding, which demonstrated that the jacalin probe binds specifically to O-linked glycans on the hinge region of IgA1. This result is a first step toward using kinetic fingerprinting to sequence glycans on IgA1.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"154 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c01488","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Immunoglobulin A (IgA) nephropathy is the most common form of primary glomerulonephritis and is triggered by damage to glomeruli from deposition of complexes formed between glycosylated IgA1 antibodies that are "galactose-deficient" and antibodies directed to these aberrant proteins. Currently, galactose deficiencies are detected with ensemble measurements, e.g., via mass spectrometry or liquid chromatography, which only measure average glycan-IgA1 ratios, but cannot resolve heterogeneity of O-glycosylation between different IgA1 populations. To resolve these differences at the single molecule level, we developed an assay to detect the glycosylation state of individual IgA1 using single molecule fluorescence microscopy. By using fluorescence resonance energy transfer (FRET), high concentrations of fluorescently labeled probes with low binding rates can be employed to observe the binding of protein probes to surface adhered target molecules and obtain their kinetic fingerprints. We measured the binding and unbinding rates of jacalin (a lectin binding to O-linked glycans) to individual IgA1 molecules on a glass surface. Adding galactose decreased binding, which demonstrated that the jacalin probe binds specifically to O-linked glycans on the hinge region of IgA1. This result is a first step toward using kinetic fingerprinting to sequence glycans on IgA1.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.