Stabilization of Hoogsteen H-bonds in G-quartet sheets by coordinated K+ ion for enhanced efficiency in guanine-rich DNA nanomotor.

IF 2.2 4区 工程技术 Q3 PHARMACOLOGY & PHARMACY
Bioimpacts Pub Date : 2025-05-03 eCollection Date: 2025-01-01 DOI:10.34172/bi.30596
Abolfazl Barzegar, Nastaran Tohidifar
{"title":"Stabilization of Hoogsteen H-bonds in G-quartet sheets by coordinated K<sup>+</sup> ion for enhanced efficiency in guanine-rich DNA nanomotor.","authors":"Abolfazl Barzegar, Nastaran Tohidifar","doi":"10.34172/bi.30596","DOIUrl":null,"url":null,"abstract":"<p><p></p><p><strong>Introduction: </strong>G-rich DNA nanomotors function as nanoscale devices and nanoswitches powered by the conversion of chemical energy into mechanical motion through transitions between duplex (DU) and tetraplex (TE) conformations. The stability of the TE conformation, crucial for nanomotor function, relies on G-quadruplex structures formed by guanine quartets. However, the detailed factors influencing TE stability remain unclear.</p><p><strong>Methods: </strong>This study investigated the role of coordinated K<sup>+</sup> ion and Hoogsteen H-bonds in stabilizing the TE structure of a truncated 15-nucleotide G-rich DNA nanomotor with the sequence GGTTGGTGTGGTTGG using atomic-scale computational analysis. Three systems were simulated: TE1K with a crystal K<sup>+</sup> ion, TE2K with a manually embedded K<sup>+</sup> ion, and TE3 lacking a K<sup>+</sup> ion. All systems underwent molecular dynamics simulations using the Amber force field and TIP3P water model.</p><p><strong>Results: </strong>The simulations revealed a clear dependence of G-quadruplex rigidity and TE conformation stability on the presence of coordinated K<sup>+</sup> ion. TE1K and TE2K, containing K<sup>+</sup> ions, exhibited significantly lower RMSD values compared to TE3, indicating more excellent structural stability and rigidity. K<sup>+</sup> ion coordination facilitated the formation of all eight Hoogsteen H-bonds within G-quartets, whereas the K<sup>+</sup> ion-free system (TE3) displayed distorted G-quadruplexes and a reduction in H-bonds, leading to a less stable \"wobble TE*\" state. The diameter of G-quartets and the radius of gyration (Rg) further supported these observations, with TE1K and TE2K maintaining compact structures compared to the more open and flexible \"wobble TE*\" conformation in TE3.</p><p><strong>Conclusion: </strong>These findings demonstrate that coordinated K<sup>+</sup> ion play a critical role in stabilizing the TE conformation of G-rich DNA nanomotors by promoting G-quadruplex rigidity and facilitating Hoogsteen H-bond formation. This enhanced stability is essential for efficient DNA nanomotor function in the DU-TE nanoswitching process.</p>","PeriodicalId":48614,"journal":{"name":"Bioimpacts","volume":"15 ","pages":"30596"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204777/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimpacts","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.34172/bi.30596","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: G-rich DNA nanomotors function as nanoscale devices and nanoswitches powered by the conversion of chemical energy into mechanical motion through transitions between duplex (DU) and tetraplex (TE) conformations. The stability of the TE conformation, crucial for nanomotor function, relies on G-quadruplex structures formed by guanine quartets. However, the detailed factors influencing TE stability remain unclear.

Methods: This study investigated the role of coordinated K+ ion and Hoogsteen H-bonds in stabilizing the TE structure of a truncated 15-nucleotide G-rich DNA nanomotor with the sequence GGTTGGTGTGGTTGG using atomic-scale computational analysis. Three systems were simulated: TE1K with a crystal K+ ion, TE2K with a manually embedded K+ ion, and TE3 lacking a K+ ion. All systems underwent molecular dynamics simulations using the Amber force field and TIP3P water model.

Results: The simulations revealed a clear dependence of G-quadruplex rigidity and TE conformation stability on the presence of coordinated K+ ion. TE1K and TE2K, containing K+ ions, exhibited significantly lower RMSD values compared to TE3, indicating more excellent structural stability and rigidity. K+ ion coordination facilitated the formation of all eight Hoogsteen H-bonds within G-quartets, whereas the K+ ion-free system (TE3) displayed distorted G-quadruplexes and a reduction in H-bonds, leading to a less stable "wobble TE*" state. The diameter of G-quartets and the radius of gyration (Rg) further supported these observations, with TE1K and TE2K maintaining compact structures compared to the more open and flexible "wobble TE*" conformation in TE3.

Conclusion: These findings demonstrate that coordinated K+ ion play a critical role in stabilizing the TE conformation of G-rich DNA nanomotors by promoting G-quadruplex rigidity and facilitating Hoogsteen H-bond formation. This enhanced stability is essential for efficient DNA nanomotor function in the DU-TE nanoswitching process.

配位K+离子稳定g -四重奏片上的Hoogsteen氢键以提高鸟嘌呤DNA纳米马达的效率。
简介:富含g的DNA纳米马达作为纳米级器件和纳米开关,通过双工(DU)和四工(TE)构象之间的转换,将化学能转化为机械运动。TE构象的稳定性对纳米运动功能至关重要,它依赖于鸟嘌呤四重奏形成的g -四重结构。然而,影响TE稳定性的具体因素尚不清楚。方法:采用原子尺度计算分析方法,研究了配位K+离子和Hoogsteen氢键在稳定序列为GGTTGGTGTGGTTGG的截断的富含15个核苷酸g的DNA纳米马达TE结构中的作用。模拟了三种体系:含晶体K+离子的TE1K、人工嵌入K+离子的TE2K和不含K+离子的TE3。利用Amber力场和TIP3P水模型对所有体系进行了分子动力学模拟。结果:模拟结果表明g -四相刚性和TE构象稳定性明显依赖于配位K+离子的存在。含有K+离子的TE1K和TE2K的RMSD值明显低于TE3,表明其结构稳定性和刚性更优异。K+离子配位促进了g -四合体中所有8个Hoogsteen氢键的形成,而无K+离子体系(TE3)显示出扭曲的g -四合体和氢键的减少,导致不太稳定的“摆动TE*”状态。g -四重奏的直径和旋转半径(Rg)进一步支持了这些观测结果,与TE3中更开放和灵活的“摆动TE*”构象相比,TE1K和TE2K保持了紧凑的结构。结论:这些研究结果表明,协同K+离子通过促进g -四联体刚性和促进Hoogsteen氢键形成,在稳定富g DNA纳米马达TE构象中发挥了关键作用。这种增强的稳定性对于在DU-TE纳米开关过程中有效的DNA纳米运动功能是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioimpacts
Bioimpacts Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.80
自引率
7.70%
发文量
36
审稿时长
5 weeks
期刊介绍: BioImpacts (BI) is a peer-reviewed multidisciplinary international journal, covering original research articles, reviews, commentaries, hypotheses, methodologies, and visions/reflections dealing with all aspects of biological and biomedical researches at molecular, cellular, functional and translational dimensions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信