Shailesh Appukuttan, Aude-Marie Grapperon, Mounir Mohamed El Mendili, Hugo Dary, Maxime Guye, Annie Verschueren, Jean-Philippe Ranjeva, Shahram Attarian, Wafaa Zaaraoui, Matthieu Gilson
{"title":"Evaluating machine learning pipelines for multimodal neuroimaging in small cohorts: an ALS case study.","authors":"Shailesh Appukuttan, Aude-Marie Grapperon, Mounir Mohamed El Mendili, Hugo Dary, Maxime Guye, Annie Verschueren, Jean-Philippe Ranjeva, Shahram Attarian, Wafaa Zaaraoui, Matthieu Gilson","doi":"10.3389/fninf.2025.1568116","DOIUrl":null,"url":null,"abstract":"<p><p>Advancements in machine learning hold great promise for the analysis of multimodal neuroimaging data. They can help identify biomarkers and improve diagnosis for various neurological disorders. However, the application of such techniques for rare and heterogeneous diseases remains challenging due to small-cohorts available for acquiring data. Efforts are therefore commonly directed toward improving the classification models, in an effort to optimize outcomes given the limited data. In this study, we systematically evaluated the impact of various machine learning pipeline configurations, including scaling methods, feature selection, dimensionality reduction, and hyperparameter optimization. The efficacy of such components in the pipeline was evaluated on classification performance using multimodal MRI data from a cohort of 16 ALS patients and 14 healthy controls. Our findings reveal that, while certain pipeline components, such as subject-wise feature normalization, help improve classification outcomes, the overall influence of pipeline refinements on performance is modest. Feature selection and dimensionality reduction steps were found to have limited utility, and the choice of hyperparameter optimization strategies produced only marginal gains. Our results suggest that, for small-cohort studies, the emphasis should shift from extensive tuning of these pipelines to addressing data-related limitations, such as progressively expanding cohort size, integrating additional modalities, and maximizing the information extracted from existing datasets. This study provides a methodological framework to guide future research and emphasizes the need for dataset enrichment to improve clinical utility.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1568116"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12202540/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2025.1568116","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Advancements in machine learning hold great promise for the analysis of multimodal neuroimaging data. They can help identify biomarkers and improve diagnosis for various neurological disorders. However, the application of such techniques for rare and heterogeneous diseases remains challenging due to small-cohorts available for acquiring data. Efforts are therefore commonly directed toward improving the classification models, in an effort to optimize outcomes given the limited data. In this study, we systematically evaluated the impact of various machine learning pipeline configurations, including scaling methods, feature selection, dimensionality reduction, and hyperparameter optimization. The efficacy of such components in the pipeline was evaluated on classification performance using multimodal MRI data from a cohort of 16 ALS patients and 14 healthy controls. Our findings reveal that, while certain pipeline components, such as subject-wise feature normalization, help improve classification outcomes, the overall influence of pipeline refinements on performance is modest. Feature selection and dimensionality reduction steps were found to have limited utility, and the choice of hyperparameter optimization strategies produced only marginal gains. Our results suggest that, for small-cohort studies, the emphasis should shift from extensive tuning of these pipelines to addressing data-related limitations, such as progressively expanding cohort size, integrating additional modalities, and maximizing the information extracted from existing datasets. This study provides a methodological framework to guide future research and emphasizes the need for dataset enrichment to improve clinical utility.
期刊介绍:
Frontiers in Neuroinformatics publishes rigorously peer-reviewed research on the development and implementation of numerical/computational models and analytical tools used to share, integrate and analyze experimental data and advance theories of the nervous system functions. Specialty Chief Editors Jan G. Bjaalie at the University of Oslo and Sean L. Hill at the École Polytechnique Fédérale de Lausanne are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neuroscience is being propelled into the information age as the volume of information explodes, demanding organization and synthesis. Novel synthesis approaches are opening up a new dimension for the exploration of the components of brain elements and systems and the vast number of variables that underlie their functions. Neural data is highly heterogeneous with complex inter-relations across multiple levels, driving the need for innovative organizing and synthesizing approaches from genes to cognition, and covering a range of species and disease states.
Frontiers in Neuroinformatics therefore welcomes submissions on existing neuroscience databases, development of data and knowledge bases for all levels of neuroscience, applications and technologies that can facilitate data sharing (interoperability, formats, terminologies, and ontologies), and novel tools for data acquisition, analyses, visualization, and dissemination of nervous system data. Our journal welcomes submissions on new tools (software and hardware) that support brain modeling, and the merging of neuroscience databases with brain models used for simulation and visualization.