{"title":"Stability and rheology of water-in-oil high internal phase emulsions containing continuous phase solid fat","authors":"Natália Aparecida Mello, Dérick Rousseau","doi":"10.1002/aocs.12954","DOIUrl":null,"url":null,"abstract":"<p>Solid fat added to the continuous phase of water-in-oil (W/O) high internal phase emulsions (HIPEs) was assessed for its effects on aqueous droplet size, microstructure, and rheology during storage for one month. The emulsions consisted of 76 wt% water and a continuous phase composed of up to 2.4 wt% fully hydrogenated soybean oil (corresponding to 10 wt% of the oil phase), polyglycerol polyricinoleate as surfactant, and soybean oil. The HIPE with 2.4 wt% solid fat showed the highest rigidity and brittleness at all-time points during storage, but also the lowest thixotropic recovery, which we ascribed to plastic failure of the fat crystal network. While fat added at all concentrations limited visual oil–water phase separation, its presence increased coalescence, particularly at higher concentrations. The present results demonstrated that the rigidity of W/O HIPEs may be tailored by addition of low amounts of solid fat; however, its addition may compromise physical stability.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"102 7","pages":"1131-1138"},"PeriodicalIF":1.9000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aocs.12954","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12954","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Solid fat added to the continuous phase of water-in-oil (W/O) high internal phase emulsions (HIPEs) was assessed for its effects on aqueous droplet size, microstructure, and rheology during storage for one month. The emulsions consisted of 76 wt% water and a continuous phase composed of up to 2.4 wt% fully hydrogenated soybean oil (corresponding to 10 wt% of the oil phase), polyglycerol polyricinoleate as surfactant, and soybean oil. The HIPE with 2.4 wt% solid fat showed the highest rigidity and brittleness at all-time points during storage, but also the lowest thixotropic recovery, which we ascribed to plastic failure of the fat crystal network. While fat added at all concentrations limited visual oil–water phase separation, its presence increased coalescence, particularly at higher concentrations. The present results demonstrated that the rigidity of W/O HIPEs may be tailored by addition of low amounts of solid fat; however, its addition may compromise physical stability.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.