DexSim2Real$^{\mathbf{2}}$: Building Explicit World Model for Precise Articulated Object Dexterous Manipulation

IF 10.5 1区 计算机科学 Q1 ROBOTICS
Taoran Jiang;Yixuan Guan;Liqian Ma;Jing Xu;Jiaojiao Meng;Weihang Chen;Zecui Zeng;Lusong Li;Dan Wu;Rui Chen
{"title":"DexSim2Real$^{\\mathbf{2}}$: Building Explicit World Model for Precise Articulated Object Dexterous Manipulation","authors":"Taoran Jiang;Yixuan Guan;Liqian Ma;Jing Xu;Jiaojiao Meng;Weihang Chen;Zecui Zeng;Lusong Li;Dan Wu;Rui Chen","doi":"10.1109/TRO.2025.3584504","DOIUrl":null,"url":null,"abstract":"Articulated objects are ubiquitous in daily life. In this article, we present DexSim2Real<inline-formula><tex-math>$^{\\mathbf{2}}$</tex-math></inline-formula>, a novel framework for goal-conditioned articulated object manipulation. The core of our framework is constructing an explicit world model of unseen articulated objects through active interactions, which enables sampling-based model-predictive control to plan trajectories achieving different goals without requiring demonstrations or reinforcement learning. It first predicts an interaction using an affordance network trained on self-supervised interaction data or videos of human manipulation. After executing the interactions on the real robot to move the object parts, we propose a novel modeling pipeline based on 3-D artificial intelligence generated content to build a digital twin of the object in simulation from multiple frames of observations. For dexterous hands, we utilize eigengrasp to reduce the action dimension, enabling more efficient trajectory searching. Experiments validate the framework’s effectiveness for precise manipulation using a suction gripper, a two-finger gripper, and two dexterous hands. The generalizability of the explicit world model also enables advanced manipulation strategies, such as manipulating with tools.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"4360-4379"},"PeriodicalIF":10.5000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11059840/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Articulated objects are ubiquitous in daily life. In this article, we present DexSim2Real$^{\mathbf{2}}$, a novel framework for goal-conditioned articulated object manipulation. The core of our framework is constructing an explicit world model of unseen articulated objects through active interactions, which enables sampling-based model-predictive control to plan trajectories achieving different goals without requiring demonstrations or reinforcement learning. It first predicts an interaction using an affordance network trained on self-supervised interaction data or videos of human manipulation. After executing the interactions on the real robot to move the object parts, we propose a novel modeling pipeline based on 3-D artificial intelligence generated content to build a digital twin of the object in simulation from multiple frames of observations. For dexterous hands, we utilize eigengrasp to reduce the action dimension, enabling more efficient trajectory searching. Experiments validate the framework’s effectiveness for precise manipulation using a suction gripper, a two-finger gripper, and two dexterous hands. The generalizability of the explicit world model also enables advanced manipulation strategies, such as manipulating with tools.
DexSim2Real$^{\mathbf{2}}$:建立精确关节物体灵巧操作的显式世界模型
铰接物体在日常生活中无处不在。在本文中,我们介绍DexSim2Real$^{\mathbf{2}}$,这是一个用于目标条件铰接对象操作的新框架。我们框架的核心是通过主动交互构建看不见的铰接对象的显式世界模型,这使得基于采样的模型预测控制能够在不需要演示或强化学习的情况下规划实现不同目标的轨迹。首先,它使用一个经过自我监督的交互数据或人类操作视频训练的信息网络来预测交互。在对真实机器人进行交互以移动物体部件之后,我们提出了一种基于三维人工智能生成内容的新型建模管道,从多帧观察中构建仿真对象的数字孪生。对于灵巧的手,我们利用特征抓来降低动作维数,从而实现更高效的轨迹搜索。实验验证了该框架在吸力夹持器、双指夹持器和两只灵巧手的精确操作中的有效性。显式世界模型的泛化性还支持高级操作策略,例如使用工具进行操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Robotics
IEEE Transactions on Robotics 工程技术-机器人学
CiteScore
14.90
自引率
5.10%
发文量
259
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles. Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信