Machine learning to detect schedules using spatiotemporal data of behavior: A proof of concept

IF 1.9 3区 心理学 Q4 BEHAVIORAL SCIENCES
Marc J. Lanovaz, Varsovia Hernandez, Alejandro León
{"title":"Machine learning to detect schedules using spatiotemporal data of behavior: A proof of concept","authors":"Marc J. Lanovaz,&nbsp;Varsovia Hernandez,&nbsp;Alejandro León","doi":"10.1002/jeab.70029","DOIUrl":null,"url":null,"abstract":"<p>Traditionally, the experimental analysis of behavior has relied on the single discrete response paradigm (e.g., key pecks, lever presses, screen clicks) to identify behavioral patterns. However, the development and availability of new technology allow researchers to move beyond this paradigm and use other features to detect schedules. Thus, our study used spatiotemporal data to compare the accuracy of four machine learning algorithms (i.e., logistic regression, support vector classifiers, random forests, and artificial neural networks) in detecting the presence and the components of time-based schedules in 12 rats involved in a behavioral experiment. Using spatiotemporal data, the algorithms accurately identified the presence or absence of programmed schedules and correctly differentiated between fixed- and variable-space schedules. That said, our analyses failed to identify an algorithm to discriminate fixed-time from variable-time schedules. Furthermore, none of the algorithms performed systematically better than the others. Our findings provide preliminary support for the utility of using spatiotemporal data with machine learning to detect stimulus schedules.</p>","PeriodicalId":17411,"journal":{"name":"Journal of the experimental analysis of behavior","volume":"124 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jeab.70029","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the experimental analysis of behavior","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jeab.70029","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Traditionally, the experimental analysis of behavior has relied on the single discrete response paradigm (e.g., key pecks, lever presses, screen clicks) to identify behavioral patterns. However, the development and availability of new technology allow researchers to move beyond this paradigm and use other features to detect schedules. Thus, our study used spatiotemporal data to compare the accuracy of four machine learning algorithms (i.e., logistic regression, support vector classifiers, random forests, and artificial neural networks) in detecting the presence and the components of time-based schedules in 12 rats involved in a behavioral experiment. Using spatiotemporal data, the algorithms accurately identified the presence or absence of programmed schedules and correctly differentiated between fixed- and variable-space schedules. That said, our analyses failed to identify an algorithm to discriminate fixed-time from variable-time schedules. Furthermore, none of the algorithms performed systematically better than the others. Our findings provide preliminary support for the utility of using spatiotemporal data with machine learning to detect stimulus schedules.

Abstract Image

使用行为的时空数据来检测日程的机器学习:概念验证
传统上,行为的实验分析依赖于单一的离散响应范式(例如,啄键,按杠杆,点击屏幕)来识别行为模式。然而,新技术的发展和可用性使研究人员能够超越这种模式,并使用其他特征来检测时间表。因此,本研究利用时空数据比较了四种机器学习算法(即逻辑回归、支持向量分类器、随机森林和人工神经网络)在12只参与行为实验的大鼠中检测基于时间的时间表的存在及其组成部分的准确性。利用时空数据,该算法准确地识别了程序时间表的存在或不存在,并正确区分了固定和可变空间时间表。也就是说,我们的分析没有找到一种算法来区分固定时间和可变时间计划。此外,没有一种算法比其他算法系统地表现得更好。我们的研究结果为使用时空数据和机器学习来检测刺激计划的实用性提供了初步支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
14.80%
发文量
83
审稿时长
>12 weeks
期刊介绍: Journal of the Experimental Analysis of Behavior is primarily for the original publication of experiments relevant to the behavior of individual organisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信