{"title":"Triptycene-based porous organic network polymers: From synthesis to applications","authors":"Akhtar Alam, Atikur Hassan, Neeladri Das","doi":"10.1016/j.pmatsci.2025.101528","DOIUrl":null,"url":null,"abstract":"Triptycene, a distinct class of aromatic compounds, has garnered significant attention across various research domains. In recent years, triptycene and its derivatives have emerged as valuable and efficient building blocks for the design and synthesis of novel porous materials with tailored structures and properties. Porous organic polymers (POPs) based on triptycene are organic macromolecules regarded as emerging materials because of their high carbon content, high specific surface area, tunable porosity, low density, high chemical and thermal stability and variable composition. Triptycene-based POPs have demonstrated their competitiveness in various applications, including but not limited to gas storage and separation, water treatment, and catalysis applications. This review comprehensively summarizes recent research on triptycene-based porous organic polymers in materials chemistry.","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"10 1","pages":""},"PeriodicalIF":33.6000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.pmatsci.2025.101528","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Triptycene, a distinct class of aromatic compounds, has garnered significant attention across various research domains. In recent years, triptycene and its derivatives have emerged as valuable and efficient building blocks for the design and synthesis of novel porous materials with tailored structures and properties. Porous organic polymers (POPs) based on triptycene are organic macromolecules regarded as emerging materials because of their high carbon content, high specific surface area, tunable porosity, low density, high chemical and thermal stability and variable composition. Triptycene-based POPs have demonstrated their competitiveness in various applications, including but not limited to gas storage and separation, water treatment, and catalysis applications. This review comprehensively summarizes recent research on triptycene-based porous organic polymers in materials chemistry.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.