Flame-retardant strategies for lignocellulose: recent progress and prospect

IF 40 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Huayu Liu , Yeling Zhu , Yuhang Ye , Isabella Therrien , Felix Wiesner , Feng Jiang
{"title":"Flame-retardant strategies for lignocellulose: recent progress and prospect","authors":"Huayu Liu ,&nbsp;Yeling Zhu ,&nbsp;Yuhang Ye ,&nbsp;Isabella Therrien ,&nbsp;Felix Wiesner ,&nbsp;Feng Jiang","doi":"10.1016/j.pmatsci.2025.101529","DOIUrl":null,"url":null,"abstract":"<div><div>Lignocellulose offers significant promise as a renewable and environmentally sustainable material for construction, while its inherent combustibility poses a major challenge to its widespread application, especially in fire-sensitive environments. In this review, the combustion behavior of lignocellulose and the key mechanisms underlying its flame-retardant strategies are examined. Various classes of flame retardants (FRs), categorized based on the functional elements, are discussed in terms of their flame-retardant mechanisms and interactions with lignocellulosic substrates. Emerging approaches that integrate FRs are explored and compared, with a focus on enhancing flame resistance while minimizing their adverse effects on material properties. Finally, the review concludes with an outlook on current challenges and future research directions, shedding the light to develop more effective, durable, and sustainable flame-retardant solutions for lignocellulose-based materials.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"155 ","pages":"Article 101529"},"PeriodicalIF":40.0000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642525001070","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lignocellulose offers significant promise as a renewable and environmentally sustainable material for construction, while its inherent combustibility poses a major challenge to its widespread application, especially in fire-sensitive environments. In this review, the combustion behavior of lignocellulose and the key mechanisms underlying its flame-retardant strategies are examined. Various classes of flame retardants (FRs), categorized based on the functional elements, are discussed in terms of their flame-retardant mechanisms and interactions with lignocellulosic substrates. Emerging approaches that integrate FRs are explored and compared, with a focus on enhancing flame resistance while minimizing their adverse effects on material properties. Finally, the review concludes with an outlook on current challenges and future research directions, shedding the light to develop more effective, durable, and sustainable flame-retardant solutions for lignocellulose-based materials.
木质纤维素阻燃策略:最新进展与展望
木质纤维素作为一种可再生和环境可持续发展的建筑材料具有重要的前景,但其固有的可燃性对其广泛应用构成了重大挑战,特别是在火灾敏感的环境中。本文综述了木质纤维素的燃烧行为及其阻燃策略的关键机理。根据功能元素分类的各种阻燃剂(FRs),讨论了它们的阻燃机理和与木质纤维素基质的相互作用。探索和比较了整合FRs的新兴方法,重点是提高阻燃性,同时最大限度地减少其对材料性能的不利影响。最后,对当前面临的挑战和未来的研究方向进行了展望,为开发更有效、耐用和可持续的木质纤维素基材料阻燃解决方案提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Materials Science
Progress in Materials Science 工程技术-材料科学:综合
CiteScore
59.60
自引率
0.80%
发文量
101
审稿时长
11.4 months
期刊介绍: Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications. The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms. Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC). Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信