Rattling-induced effects of Ag atoms and anomalous phonon transport along with thermoelectric performance in silver-based chalcopyrite AgGaX2 (X = Se, Te)

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shuangshuang Luan , Yinchang Zhao , Jun Ni , Zhenhong Dai
{"title":"Rattling-induced effects of Ag atoms and anomalous phonon transport along with thermoelectric performance in silver-based chalcopyrite AgGaX2 (X = Se, Te)","authors":"Shuangshuang Luan ,&nbsp;Yinchang Zhao ,&nbsp;Jun Ni ,&nbsp;Zhenhong Dai","doi":"10.1016/j.mtphys.2025.101769","DOIUrl":null,"url":null,"abstract":"<div><div>A comprehensive elucidation of phonon transport mechanisms is imperative for the rational design of advanced thermoelectric materials exhibiting intrinsically low lattice thermal conductivity. In this work, the thermal and electrical transport behaviors of AgGaX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> (X = Se, Te) are comprehensively explored through self-consistent phonon calculations, compressive sensing techniques, and the Boltzmann transport equation. The ultralow lattice thermal conductivity (<span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span>) of AgGaX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> is attributed to the strong anharmonicity due to the rattling modes of Ag atoms, strong phonon scattering due to the strong coupling between acoustic and low-frequency optical phonon branches, and the unusually high contribution of optical phonons to thermal conductivity. We also find that the <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> of AgGaX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> (X = Se, Te) exhibits an anomalous trend compared to the conventional mass trend, with <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> decreasing when the lighter Se atoms replace Te atoms. This anomalous phonon transport behavior is attributed to the weaker Ag–Se bonding strength, lower avoided crossing frequency, and the dominant contribution of optical phonons to <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> (exceeding 60%) in AgGaSe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. The high band degeneracy and strong dispersion near the valence band maximum (VBM) result in a high power factor (<span><math><mrow><mi>P</mi><mi>F</mi></mrow></math></span>), which, combined with the ultralow <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span>, leads to excellent thermoelectric performance. Accounting for multiple scattering processes, the peak <span><math><mrow><mi>Z</mi><mi>T</mi></mrow></math></span> values of p-type AgGaSe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and AgGaTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> are predicted to attain 2.53 and 2.71 at 700 K, respectively. The inclusion of spin–orbit coupling (SOC) causes the peak <span><math><mrow><mi>Z</mi><mi>T</mi></mrow></math></span> values to decrease to 1.99 and 2.14, representing decreases of 22.1% and 21%, respectively. These results indicate that AgGaX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> is a promising class of high performance thermoelectric materials, and its unique phonon dynamics and electron transport properties make it promising for thermoelectric applications.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"56 ","pages":"Article 101769"},"PeriodicalIF":10.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325001257","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A comprehensive elucidation of phonon transport mechanisms is imperative for the rational design of advanced thermoelectric materials exhibiting intrinsically low lattice thermal conductivity. In this work, the thermal and electrical transport behaviors of AgGaX2 (X = Se, Te) are comprehensively explored through self-consistent phonon calculations, compressive sensing techniques, and the Boltzmann transport equation. The ultralow lattice thermal conductivity (κL) of AgGaX2 is attributed to the strong anharmonicity due to the rattling modes of Ag atoms, strong phonon scattering due to the strong coupling between acoustic and low-frequency optical phonon branches, and the unusually high contribution of optical phonons to thermal conductivity. We also find that the κL of AgGaX2 (X = Se, Te) exhibits an anomalous trend compared to the conventional mass trend, with κL decreasing when the lighter Se atoms replace Te atoms. This anomalous phonon transport behavior is attributed to the weaker Ag–Se bonding strength, lower avoided crossing frequency, and the dominant contribution of optical phonons to κL (exceeding 60%) in AgGaSe2. The high band degeneracy and strong dispersion near the valence band maximum (VBM) result in a high power factor (PF), which, combined with the ultralow κL, leads to excellent thermoelectric performance. Accounting for multiple scattering processes, the peak ZT values of p-type AgGaSe2 and AgGaTe2 are predicted to attain 2.53 and 2.71 at 700 K, respectively. The inclusion of spin–orbit coupling (SOC) causes the peak ZT values to decrease to 1.99 and 2.14, representing decreases of 22.1% and 21%, respectively. These results indicate that AgGaX2 is a promising class of high performance thermoelectric materials, and its unique phonon dynamics and electron transport properties make it promising for thermoelectric applications.

Abstract Image

银基黄铜矿AgGaX2 (X = Se, Te)中银原子和异常声子输运对热电性能的影响
全面阐明声子输运机制对于合理设计具有低晶格热导率的先进热电材料是必要的。在这项工作中,通过自洽声子计算、压缩感知技术和玻尔兹曼输运方程,全面探索了AgGaX2 (X = Se, Te)的热和电输运行为。AgGaX2的超低晶格热导率(κL)是由于银原子的咔嗒模式引起的强非调和性,声子分支与低频光学声子分支之间的强耦合引起的强声子散射,以及光学声子对热导率的异常高的贡献。我们还发现,与常规质量趋势相比,AgGaX2 (X = Se, Te)的κL表现出异常趋势,当较轻的Se原子取代Te原子时,κL减小。这种异常的声子输运行为归因于AgGaSe2中较弱的Ag-Se键强度、较低的避免交叉频率以及光学声子对κL的主要贡献(超过60%)。高能带简并和价带最大值(VBM)附近的强色散使得材料具有较高的功率因数(PF),再加上超低的λ l,使得材料具有优异的热电性能。考虑到多重散射过程,在700 K时,p型AgGaSe2和AgGaTe2的ZT峰值分别达到2.53和2.71。自旋-轨道耦合(SOC)的加入使得ZT峰值分别下降到1.99和2.14,分别下降22.1%和21%。这些结果表明,AgGaX2是一种很有前途的高性能热电材料,其独特的声子动力学和电子输运性质使其具有热电应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信