Forecasting Digital Asset Return: An Application of Machine Learning Model

IF 2.8 3区 经济学 Q2 BUSINESS, FINANCE
Vito Ciciretti, Alberto Pallotta, Suman Lodh, P. K. Senyo, Monomita Nandy
{"title":"Forecasting Digital Asset Return: An Application of Machine Learning Model","authors":"Vito Ciciretti,&nbsp;Alberto Pallotta,&nbsp;Suman Lodh,&nbsp;P. K. Senyo,&nbsp;Monomita Nandy","doi":"10.1002/ijfe.3062","DOIUrl":null,"url":null,"abstract":"<p>In this study, we aim to identify the machine learning model that can overcome the limitations of traditional statistical modelling techniques in forecasting Bitcoin prices. Also, we outline the necessary conditions that make the model suitable. We draw on a multivariate large data set of Bitcoin prices and its market microstructure variables and apply three machine learning models, namely double deep Q-learning, XGBoost and ARFIMA-GARCH. The findings show that the double deep Q-learning model outperforms the others in terms of returns and Sortino ratio and is capable of one-step-ahead sign forecast of the returns even on synthetic data. These critical insights in forecasting literature will support practitioners and regulators to identify an economically viable cryptocurrency forecasting return model.</p>","PeriodicalId":47461,"journal":{"name":"International Journal of Finance & Economics","volume":"30 3","pages":"3169-3186"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijfe.3062","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Finance & Economics","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ijfe.3062","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we aim to identify the machine learning model that can overcome the limitations of traditional statistical modelling techniques in forecasting Bitcoin prices. Also, we outline the necessary conditions that make the model suitable. We draw on a multivariate large data set of Bitcoin prices and its market microstructure variables and apply three machine learning models, namely double deep Q-learning, XGBoost and ARFIMA-GARCH. The findings show that the double deep Q-learning model outperforms the others in terms of returns and Sortino ratio and is capable of one-step-ahead sign forecast of the returns even on synthetic data. These critical insights in forecasting literature will support practitioners and regulators to identify an economically viable cryptocurrency forecasting return model.

Abstract Image

数字资产收益预测:机器学习模型的应用
在这项研究中,我们的目标是确定机器学习模型,该模型可以克服传统统计建模技术在预测比特币价格方面的局限性。此外,我们还概述了使该模型适用的必要条件。我们利用比特币价格及其市场微观结构变量的多元大数据集,并应用三种机器学习模型,即双深度q -学习,XGBoost和ARFIMA-GARCH。研究结果表明,双深度q学习模型在收益和Sortino比率方面优于其他模型,并且即使在合成数据上也能够提前一步预测收益。预测文献中的这些关键见解将支持从业者和监管机构确定经济上可行的加密货币预测回报模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
6.90%
发文量
143
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信