Zhuo Zhang, Jingxia Li, Daneah Willis, Huailu Tu, Max Costa
{"title":"Elevated SNHG1 promotes invasion and migration of Cd(II)-transformed cells through Sox2, Rac1, and Slug","authors":"Zhuo Zhang, Jingxia Li, Daneah Willis, Huailu Tu, Max Costa","doi":"10.1016/j.taap.2025.117452","DOIUrl":null,"url":null,"abstract":"<div><div>Numerous studies have shown that exposure to cadmium [Cd(II)] contributes to the development of cancers in the lung and other organs. Cd(II) compounds are classified as confirmed human carcinogens; however, the mechanisms underlying Cd(II)-induced carcinogenesis remain poorly understood. Small nucleolar RNA host gene 1 (SNHG1), a long non-coding RNA (lncRNA), has been identified as an oncogene. In this study, we investigated the role of SNHG1 in the invasion and migration of Cd(II)-transformed cells. Our findings revealed that SNHG1 expression was significantly elevated in Cd(II)-transformed cells compared to their passage-matched normal BEAS-2B counterparts. Silencing SNHG1 reduced the invasive and migratory capacities of Cd(II)-transformed cells and inhibited malignant transformation induced by long-term Cd exposure. Notably, ectopic expression of SNHG1 alone in BEAS-2B cells was sufficient to drive malignant transformation and enhance invasion and migration, underscoring its oncogenic potential. SRY-box 2 (Sox2), a transcription factor implicated in cancer cell proliferation, invasion, and migration, was found to be upregulated in Cd(II)-transformed cells, while SNHG1 knockdown led to decreased Sox2 protein levels. Similarly, ras-related C3 botulinum toxin substrate 1 (Rac1), a key regulator of cytoskeletal dynamics linked to tumor growth, invasion, and metastasis, was also elevated in Cd(II)-transformed cells. Knockdown of SNHG1 reduced Rac1 protein levels, and Rac1 knockout significantly suppressed invasion and migration. Additionally, we observed increased expression of Slug, a key transcription factor invovlved in epithelial-mesenchymal transition (EMT), and decreased expression of its downstream target E-cadherin in Cd(II)-transformed cells. Collectively, these results demonstrate that elevated SNHG1 promotes the expression of Sox2, Rac1, and Slug, thereby driving the invasive and migratory behavior of Cd(II)-transformed cells.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"502 ","pages":"Article 117452"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X25002285","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous studies have shown that exposure to cadmium [Cd(II)] contributes to the development of cancers in the lung and other organs. Cd(II) compounds are classified as confirmed human carcinogens; however, the mechanisms underlying Cd(II)-induced carcinogenesis remain poorly understood. Small nucleolar RNA host gene 1 (SNHG1), a long non-coding RNA (lncRNA), has been identified as an oncogene. In this study, we investigated the role of SNHG1 in the invasion and migration of Cd(II)-transformed cells. Our findings revealed that SNHG1 expression was significantly elevated in Cd(II)-transformed cells compared to their passage-matched normal BEAS-2B counterparts. Silencing SNHG1 reduced the invasive and migratory capacities of Cd(II)-transformed cells and inhibited malignant transformation induced by long-term Cd exposure. Notably, ectopic expression of SNHG1 alone in BEAS-2B cells was sufficient to drive malignant transformation and enhance invasion and migration, underscoring its oncogenic potential. SRY-box 2 (Sox2), a transcription factor implicated in cancer cell proliferation, invasion, and migration, was found to be upregulated in Cd(II)-transformed cells, while SNHG1 knockdown led to decreased Sox2 protein levels. Similarly, ras-related C3 botulinum toxin substrate 1 (Rac1), a key regulator of cytoskeletal dynamics linked to tumor growth, invasion, and metastasis, was also elevated in Cd(II)-transformed cells. Knockdown of SNHG1 reduced Rac1 protein levels, and Rac1 knockout significantly suppressed invasion and migration. Additionally, we observed increased expression of Slug, a key transcription factor invovlved in epithelial-mesenchymal transition (EMT), and decreased expression of its downstream target E-cadherin in Cd(II)-transformed cells. Collectively, these results demonstrate that elevated SNHG1 promotes the expression of Sox2, Rac1, and Slug, thereby driving the invasive and migratory behavior of Cd(II)-transformed cells.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.