Sayma Azeem , Tzu-Tung Chang , Chi Peng , Yen-Lurk Lee , Nai-Hsing Yeh , Yi-Shuian Huang
{"title":"CMTR1-catalyzed 2′-O-methylation promotes NMDA receptor signaling, long-term potentiation and memory","authors":"Sayma Azeem , Tzu-Tung Chang , Chi Peng , Yen-Lurk Lee , Nai-Hsing Yeh , Yi-Shuian Huang","doi":"10.1016/j.pneurobio.2025.102802","DOIUrl":null,"url":null,"abstract":"<div><div>Eukaryotic mRNA includes a 5′-end m7G cap to prevent degradation and enable cap-dependent translation. The first transcribed ribonucleotide undergoes additional 2′-O-ribose methylation by Cap Methyltransferase 1 (CMTR1). Although this modification impacts gene expression, its physiological role remains largely unclear. High CMTR1 expression in the adult hippocampus prompted us to examine its role in learning and memory. In CMTR1-deficient hippocampi, numerous downregulated genes from transcriptome and proteome analyses were linked to glutamatergic synapses, including N-methyl-D-aspartate receptor (NMDAR) subunits. We generated CMTR1 conditional knockout mice targeting forebrain excitatory neurons and observed deficits in long-term potentiation (LTP) and spatial memory consolidation. D-cycloserine, an NMDAR allosteric agonist, restored memory consolidation and NMDAR hypofunction in these mice. Additionally, re-expression of wild-type, but not catalytically inactive, CMTR1 in hippocampal CA1 neurons rescued LTP and memory deficits. Our findings highlight the role of CMTR1 in regulating NMDAR signaling, which is critical for synaptic plasticity and memory consolidation.</div></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"251 ","pages":"Article 102802"},"PeriodicalIF":6.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301008225000930","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Eukaryotic mRNA includes a 5′-end m7G cap to prevent degradation and enable cap-dependent translation. The first transcribed ribonucleotide undergoes additional 2′-O-ribose methylation by Cap Methyltransferase 1 (CMTR1). Although this modification impacts gene expression, its physiological role remains largely unclear. High CMTR1 expression in the adult hippocampus prompted us to examine its role in learning and memory. In CMTR1-deficient hippocampi, numerous downregulated genes from transcriptome and proteome analyses were linked to glutamatergic synapses, including N-methyl-D-aspartate receptor (NMDAR) subunits. We generated CMTR1 conditional knockout mice targeting forebrain excitatory neurons and observed deficits in long-term potentiation (LTP) and spatial memory consolidation. D-cycloserine, an NMDAR allosteric agonist, restored memory consolidation and NMDAR hypofunction in these mice. Additionally, re-expression of wild-type, but not catalytically inactive, CMTR1 in hippocampal CA1 neurons rescued LTP and memory deficits. Our findings highlight the role of CMTR1 in regulating NMDAR signaling, which is critical for synaptic plasticity and memory consolidation.
期刊介绍:
Progress in Neurobiology is an international journal that publishes groundbreaking original research, comprehensive review articles and opinion pieces written by leading researchers. The journal welcomes contributions from the broad field of neuroscience that apply neurophysiological, biochemical, pharmacological, molecular biological, anatomical, computational and behavioral analyses to problems of molecular, cellular, developmental, systems, and clinical neuroscience.