Thermal and Dimensional Stability of Photocatalytic Material ZnPS3 Under Extreme Environmental Conditions

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Abhishek Mukherjee, Vivian J. Santamaría‐García, Damian Wlodarczyk, Ajeesh K. Somakumar, Piotr Sybilski, Ryan Siebenaller, Emmanuel Rowe, Saranya Narayanan, Michael A. Susner, L. Marcelo Lozano‐Sanchez, Andrzej Suchocki, Julio L. Palma, Svetlana V. Boriskina
{"title":"Thermal and Dimensional Stability of Photocatalytic Material ZnPS3 Under Extreme Environmental Conditions","authors":"Abhishek Mukherjee, Vivian J. Santamaría‐García, Damian Wlodarczyk, Ajeesh K. Somakumar, Piotr Sybilski, Ryan Siebenaller, Emmanuel Rowe, Saranya Narayanan, Michael A. Susner, L. Marcelo Lozano‐Sanchez, Andrzej Suchocki, Julio L. Palma, Svetlana V. Boriskina","doi":"10.1002/aelm.202500093","DOIUrl":null,"url":null,"abstract":"Zinc phosphorus trisulfide (ZnPS<jats:sub>3</jats:sub>), a promising material for photocatalysis and energy storage, is shown in this study to exhibit remarkable stability under extreme conditions. Its optical and structural properties are explored under high pressure and cryogenic temperatures using photoluminescence (PL) spectroscopy, Raman scattering, and density functional theory (DFT). The experimental results identify a pressure‐induced phase transition starting at 6.75 GPa and stabilizing by 12.5 GPa, after which ZnPS<jats:sub>3</jats:sub> demonstrates robust stability across a broad pressure range up to 24.5 GPa. DFT calculations support these observations and further predict a semiconductor‐to‐semimetal transition at 100 GPa, while PL measurements reveal defect‐assisted emission that quench under pressure due to enhanced non‐radiative recombination. At cryogenic temperatures, PL quenching intensifies as non‐radiative processes dominate, driven by a rising Grüneisen parameter and reduced phonon population. Cryogenic X‐ray diffraction (XRD) also reveals a high mean thermal expansion coefficient (TEC) of (4.369 ± 0.393) × 10<jats:sup>−5</jats:sup> K<jats:sup>−1</jats:sup>, among the highest reported for 2D materials. This unique combination of tunable electronic properties under low pressure and high thermal sensitivity makes ZnPS<jats:sub>3</jats:sub> a strong candidate for sensing applications in extreme environments.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"27 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202500093","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc phosphorus trisulfide (ZnPS3), a promising material for photocatalysis and energy storage, is shown in this study to exhibit remarkable stability under extreme conditions. Its optical and structural properties are explored under high pressure and cryogenic temperatures using photoluminescence (PL) spectroscopy, Raman scattering, and density functional theory (DFT). The experimental results identify a pressure‐induced phase transition starting at 6.75 GPa and stabilizing by 12.5 GPa, after which ZnPS3 demonstrates robust stability across a broad pressure range up to 24.5 GPa. DFT calculations support these observations and further predict a semiconductor‐to‐semimetal transition at 100 GPa, while PL measurements reveal defect‐assisted emission that quench under pressure due to enhanced non‐radiative recombination. At cryogenic temperatures, PL quenching intensifies as non‐radiative processes dominate, driven by a rising Grüneisen parameter and reduced phonon population. Cryogenic X‐ray diffraction (XRD) also reveals a high mean thermal expansion coefficient (TEC) of (4.369 ± 0.393) × 10−5 K−1, among the highest reported for 2D materials. This unique combination of tunable electronic properties under low pressure and high thermal sensitivity makes ZnPS3 a strong candidate for sensing applications in extreme environments.
ZnPS3光催化材料在极端环境条件下的热稳定性和尺寸稳定性
三硫化锌磷(ZnPS3)是一种很有前途的光催化和储能材料,在极端条件下表现出显著的稳定性。利用光致发光(PL)光谱、拉曼散射和密度泛函理论(DFT)研究了其在高压和低温下的光学和结构特性。实验结果表明,ZnPS3的相变始于6.75 GPa,稳定于12.5 GPa,在此之后,ZnPS3在高达24.5 GPa的宽压力范围内表现出强大的稳定性。DFT计算支持这些观察结果,并进一步预测了100 GPa下半导体到半金属的转变,而PL测量显示,由于增强的非辐射复合,缺陷辅助发射在压力下淬灭。在低温下,由于颗粒尼森参数的上升和声子数量的减少,非辐射过程占主导地位,PL猝灭加剧。低温X射线衍射(XRD)也显示出较高的平均热膨胀系数(TEC)为(4.369±0.393)× 10−5 K−1,是2D材料中最高的。这种在低压和高热灵敏度下可调谐的电子特性的独特组合使ZnPS3成为极端环境中传感应用的有力候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信