An Updated and Comprehensive Review Exploring the Gut-Brain Axis in Neurodegenerative Disorders and Neurotraumas: Implications for Therapeutic Strategies.
Ahmed Hasan, Sarah Adriana Scuderi, Anna Paola Capra, Domenico Giosa, Andrea Bonomo, Alessio Ardizzone, Emanuela Esposito
{"title":"An Updated and Comprehensive Review Exploring the Gut-Brain Axis in Neurodegenerative Disorders and Neurotraumas: Implications for Therapeutic Strategies.","authors":"Ahmed Hasan, Sarah Adriana Scuderi, Anna Paola Capra, Domenico Giosa, Andrea Bonomo, Alessio Ardizzone, Emanuela Esposito","doi":"10.3390/brainsci15060654","DOIUrl":null,"url":null,"abstract":"<p><p>The gut-brain axis (GBA) refers to the biochemical bidirectional communication between the central nervous system (CNS) and the gastrointestinal tract, linking brain and gut functions. It comprises a complex network of interactions involving the endocrine, immune, autonomic, and enteric nervous systems. The balance of this bidirectional pathway depends on the composition of the gut microbiome and its metabolites. While the causes of neurodegenerative diseases (NDDs) vary, the gut microbiome plays a crucial role in their development and prognosis. NDDs are often associated with an inflammation-related gut microbiome. However, restoring balance to the gut microbiome and reducing inflammation may have therapeutic benefits. In particular, introducing short-chain fatty acid-producing bacteria, key metabolites that support gut homeostasis, can help counteract the inflammatory microbiome. This strong pathological link between the gut and NDDs underscores the gut-brain axis (GBA) as a promising target for therapeutic intervention. This review, by scrutinizing the more recent original research articles published in PubMed (MEDLINE) database, emphasizes the emerging notion that GBA is an equally important pathological marker for neurological movement disorders, particularly in Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Huntington's disease and neurotraumatic disorders such as traumatic brain injury and spinal cord injury. Additionally, the GBA presents a promising therapeutic target for managing these diseases.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190727/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15060654","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The gut-brain axis (GBA) refers to the biochemical bidirectional communication between the central nervous system (CNS) and the gastrointestinal tract, linking brain and gut functions. It comprises a complex network of interactions involving the endocrine, immune, autonomic, and enteric nervous systems. The balance of this bidirectional pathway depends on the composition of the gut microbiome and its metabolites. While the causes of neurodegenerative diseases (NDDs) vary, the gut microbiome plays a crucial role in their development and prognosis. NDDs are often associated with an inflammation-related gut microbiome. However, restoring balance to the gut microbiome and reducing inflammation may have therapeutic benefits. In particular, introducing short-chain fatty acid-producing bacteria, key metabolites that support gut homeostasis, can help counteract the inflammatory microbiome. This strong pathological link between the gut and NDDs underscores the gut-brain axis (GBA) as a promising target for therapeutic intervention. This review, by scrutinizing the more recent original research articles published in PubMed (MEDLINE) database, emphasizes the emerging notion that GBA is an equally important pathological marker for neurological movement disorders, particularly in Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Huntington's disease and neurotraumatic disorders such as traumatic brain injury and spinal cord injury. Additionally, the GBA presents a promising therapeutic target for managing these diseases.
期刊介绍:
Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.