Carmen M Labandeira, Laura Camacho-Meño, Paula Aracil-Pastor, Juan A Suárez-Quintanilla, Jose L Labandeira-García, Ana I Rodríguez-Pérez
{"title":"Renin-Angiotensin System Autoantibody Network in Parkinson's Disease Patients.","authors":"Carmen M Labandeira, Laura Camacho-Meño, Paula Aracil-Pastor, Juan A Suárez-Quintanilla, Jose L Labandeira-García, Ana I Rodríguez-Pérez","doi":"10.3390/antiox14060706","DOIUrl":null,"url":null,"abstract":"<p><p>The tissue renin-angiotensin system (RAS) is a regulator of oxidative and inflammatory homeostasis by balancing its pro-oxidative/pro-inflammatory axis (angiotensin II, AngII, and AngII type-1 receptor, AT1) and its anti-oxidative/anti-inflammatory axis (AngII/AT2 and ACE2/Ang1-7/Mas receptors). An RAS dysregulation contributes to diseases, including Parkinson's disease (PD). Immune mechanisms are involved in PD. An increase in levels of pro-oxidative/pro-inflammatory autoantibodies for AT1 (AT1-AAs) and ACE2 (ACE2-AAs) has been recently observed in PD. However, it is not known whether dysregulation of autoantibodies for AT2, MasR, and the correlations among different RAS-AAs occurs in PD. In 106 controls and 117 PD patients, we used enzyme-linked immunosorbent assays to determine correlations among serum RAS-AAs, and among RAS-AAs and pro-inflammatory cytokines and 27-hydroxycholesterol. PD patients showed an increase in MasR-AAs, and a more interconnected cluster of correlations among RAS-AAs (AT1-AA, AT2-AA, MasR-AA, ACE2-AA), changes in RAS-AA networks with sex and age, and differences in networks between RAS-AAs and major PD-related pro-inflammatory cytokines and 27-hydroxycholesterol. The association between AT1-AAs and PD remained significant even after adjustment for age and other variables. This study reveals a disease-specific network of RAS autoantibodies in PD that links immune and oxidative pathways and identifies new biomarker patterns and potential therapeutic targets.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 6","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189439/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14060706","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The tissue renin-angiotensin system (RAS) is a regulator of oxidative and inflammatory homeostasis by balancing its pro-oxidative/pro-inflammatory axis (angiotensin II, AngII, and AngII type-1 receptor, AT1) and its anti-oxidative/anti-inflammatory axis (AngII/AT2 and ACE2/Ang1-7/Mas receptors). An RAS dysregulation contributes to diseases, including Parkinson's disease (PD). Immune mechanisms are involved in PD. An increase in levels of pro-oxidative/pro-inflammatory autoantibodies for AT1 (AT1-AAs) and ACE2 (ACE2-AAs) has been recently observed in PD. However, it is not known whether dysregulation of autoantibodies for AT2, MasR, and the correlations among different RAS-AAs occurs in PD. In 106 controls and 117 PD patients, we used enzyme-linked immunosorbent assays to determine correlations among serum RAS-AAs, and among RAS-AAs and pro-inflammatory cytokines and 27-hydroxycholesterol. PD patients showed an increase in MasR-AAs, and a more interconnected cluster of correlations among RAS-AAs (AT1-AA, AT2-AA, MasR-AA, ACE2-AA), changes in RAS-AA networks with sex and age, and differences in networks between RAS-AAs and major PD-related pro-inflammatory cytokines and 27-hydroxycholesterol. The association between AT1-AAs and PD remained significant even after adjustment for age and other variables. This study reveals a disease-specific network of RAS autoantibodies in PD that links immune and oxidative pathways and identifies new biomarker patterns and potential therapeutic targets.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.