MAPK Signaling in the Interplay Between Oxidative Stress and Autophagy.

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Enrico Desideri, Serena Castelli, Maria Rosa Ciriolo
{"title":"MAPK Signaling in the Interplay Between Oxidative Stress and Autophagy.","authors":"Enrico Desideri, Serena Castelli, Maria Rosa Ciriolo","doi":"10.3390/antiox14060662","DOIUrl":null,"url":null,"abstract":"<p><p>The term autophagy identifies several mechanisms that mediate the degradation of intracellular and extracellular components via the lysosomal pathway. Three main forms of autophagy exist, namely macroautophagy, chaperone-mediated autophagy, and endosomal microautophagy, which have distinct mechanisms but share lysosomes as the final destination of their cargo. A basal autophagic flux is crucial for the maintenance of cellular homeostasis, being involved in the physiological turnover of proteins and organelles. Several stressors, including nutrient shortage and genotoxic and oxidative stress, increase the autophagic rate, which prevents the accumulation of damaged and potentially harmful cell components, thus preserving cell viability. In this context, several studies have highlighted the role of MAPKs, serine-threonine kinases activated by several stimuli, in linking oxidative stress and autophagy. Indeed, several oxidative stressors activate autophagy by converging on MAPKs, directly or indirectly. In this regard, the different transcription factors that bridge MAPKs and autophagic activation are here described. In this review, we summarize the current knowledge regarding the regulation of autophagy by MAPK, including the atypical ones, with a particular focus on the regulation of autophagy by oxidative stress.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 6","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189088/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14060662","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The term autophagy identifies several mechanisms that mediate the degradation of intracellular and extracellular components via the lysosomal pathway. Three main forms of autophagy exist, namely macroautophagy, chaperone-mediated autophagy, and endosomal microautophagy, which have distinct mechanisms but share lysosomes as the final destination of their cargo. A basal autophagic flux is crucial for the maintenance of cellular homeostasis, being involved in the physiological turnover of proteins and organelles. Several stressors, including nutrient shortage and genotoxic and oxidative stress, increase the autophagic rate, which prevents the accumulation of damaged and potentially harmful cell components, thus preserving cell viability. In this context, several studies have highlighted the role of MAPKs, serine-threonine kinases activated by several stimuli, in linking oxidative stress and autophagy. Indeed, several oxidative stressors activate autophagy by converging on MAPKs, directly or indirectly. In this regard, the different transcription factors that bridge MAPKs and autophagic activation are here described. In this review, we summarize the current knowledge regarding the regulation of autophagy by MAPK, including the atypical ones, with a particular focus on the regulation of autophagy by oxidative stress.

MAPK信号在氧化应激和自噬之间的相互作用。
自噬一词确定了通过溶酶体途径介导细胞内和细胞外成分降解的几种机制。存在三种主要形式的自噬,即巨噬、伴侣介导的自噬和内体微自噬,它们具有不同的机制,但都有溶酶体作为其货物的最终目的地。基础自噬通量对维持细胞稳态至关重要,涉及蛋白质和细胞器的生理周转。包括营养缺乏、基因毒性和氧化应激在内的一些应激源可增加自噬率,从而防止受损和潜在有害细胞成分的积累,从而保持细胞活力。在此背景下,一些研究强调了MAPKs(被多种刺激激活的丝氨酸-苏氨酸激酶)在氧化应激和自噬中的作用。事实上,一些氧化应激因子通过直接或间接地聚集在mapk上激活自噬。在这方面,本文描述了连接mapk和自噬激活的不同转录因子。在这篇综述中,我们总结了目前关于MAPK调控自噬的知识,包括非典型的,并特别关注氧化应激对自噬的调控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Antioxidants
Antioxidants Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍: Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信