Fusheng Ma, Juanqi Li, Mengwei Huang, Mengyan E, Dandan Cui, Guoxiu Wu, Shengli Li, Yang Li
{"title":"ELONGATED HYPOCOTYL5 Regulates Resistance to Root-Knot Nematode by Modulating Antioxidant System and Jasmonic Acid in <i>Cucumis sativus</i>.","authors":"Fusheng Ma, Juanqi Li, Mengwei Huang, Mengyan E, Dandan Cui, Guoxiu Wu, Shengli Li, Yang Li","doi":"10.3390/antiox14060679","DOIUrl":null,"url":null,"abstract":"<p><p>Root-knot nematodes (RKNs), specifically <i>Meloidogyne incognita</i>, are notoriously difficult to eliminate as endophytic nematodes, and cause severe damage to various plants. Cucumber (<i>Cucumis sativus</i>), which is a cash crop widely grown across the world, is often infected by RKNs. ELONGATED HYPOCOTYL5 (HY5), a member of the bZIP transcription factor family, plays a vital role in hormone, nutrient, abiotic stress, biotic stress, and oxygen species (ROS) signaling pathways. However, the involvement of HY5 in the defense against RKNs has rarely been reported. The present study initially explored the response of CsHY5 to RKNs. The results indicated that the <i>hy5</i> mutant had a higher number of nematodes and galls in the root system and exhibited a higher susceptibility to RKNs compared with the wild type (WT). Particularly, the root-knot nematodes in <i>hy5</i> plants completed their life cycle more quickly and produced more eggs. The activities of defense-related hormones and antioxidant enzymes were measured, and the results indicated that JA, jasmonoyl-isoleucine (JA-Ile), abscisic acid (ABA), peroxidase (POD), and ascorbate peroxidase (APX) were significantly elevated in the wild type, but were not induced or decreased in the mutant. Through transcriptome sequencing analysis and quantitative real-time PCR (qRT-PCR), it was found that when RKNs infect plants, the key genes of jasmonic acid (JA) synthesis, <i>CsAOC</i> and <i>CsAOS</i>, as well as the key gene of the antioxidant system, <i>CsPOD</i>, were all significantly induced. Nevertheless, this induction effect disappeared in the <i>hy5</i> mutant. Generally, CsHY5 plays a role in the response of cucumber to RKNs, and its deletion increases the sensitivity of cucumber to RKNs. These results suggest that <i>CsHY5</i> may affect the resistance of cucumber to RKNs by affecting antioxidant enzyme activities and hormone content.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 6","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189740/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14060679","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Root-knot nematodes (RKNs), specifically Meloidogyne incognita, are notoriously difficult to eliminate as endophytic nematodes, and cause severe damage to various plants. Cucumber (Cucumis sativus), which is a cash crop widely grown across the world, is often infected by RKNs. ELONGATED HYPOCOTYL5 (HY5), a member of the bZIP transcription factor family, plays a vital role in hormone, nutrient, abiotic stress, biotic stress, and oxygen species (ROS) signaling pathways. However, the involvement of HY5 in the defense against RKNs has rarely been reported. The present study initially explored the response of CsHY5 to RKNs. The results indicated that the hy5 mutant had a higher number of nematodes and galls in the root system and exhibited a higher susceptibility to RKNs compared with the wild type (WT). Particularly, the root-knot nematodes in hy5 plants completed their life cycle more quickly and produced more eggs. The activities of defense-related hormones and antioxidant enzymes were measured, and the results indicated that JA, jasmonoyl-isoleucine (JA-Ile), abscisic acid (ABA), peroxidase (POD), and ascorbate peroxidase (APX) were significantly elevated in the wild type, but were not induced or decreased in the mutant. Through transcriptome sequencing analysis and quantitative real-time PCR (qRT-PCR), it was found that when RKNs infect plants, the key genes of jasmonic acid (JA) synthesis, CsAOC and CsAOS, as well as the key gene of the antioxidant system, CsPOD, were all significantly induced. Nevertheless, this induction effect disappeared in the hy5 mutant. Generally, CsHY5 plays a role in the response of cucumber to RKNs, and its deletion increases the sensitivity of cucumber to RKNs. These results suggest that CsHY5 may affect the resistance of cucumber to RKNs by affecting antioxidant enzyme activities and hormone content.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.