A Theoretical Analysis of the Effects That the Glycocalyx and the Internal Elastic Lamina Have on Nitric Oxide Concentration Gradients in the Arterial Wall.
{"title":"A Theoretical Analysis of the Effects That the Glycocalyx and the Internal Elastic Lamina Have on Nitric Oxide Concentration Gradients in the Arterial Wall.","authors":"Yaroslav R Nartsissov, Irena P Seraya","doi":"10.3390/antiox14060747","DOIUrl":null,"url":null,"abstract":"<p><p>Nitric oxide (NO) is a well-known member of the reactive oxygen species (ROS) family. The extent of its concentration influences whether it produces beneficial physiological effects or harmful toxic reactions. In a blood system, NO is generally produced by nitric oxide synthase (NOS) in the endothelium. Then, it diffuses into the smooth muscle wall causing a vasodilatation, and it can also be diluted in a lumen blood stream. In the present study, we analyzed a convectional reaction-diffusion of NO in a 3D digital phantom of a short segment of small arteries. NO concentrations were analyzed by applying numerical solutions to the boundary problems, which included the Navier-Stokes equation, Darcy's law, varying consumption of NO, and the dependence of NOS activity on shear stress. All the boundary problems were evaluated using COMSOL Multiphysics software ver. 5.5. The role of two diffusive barriers surrounding the endothelium producing NO was theoretically proven. When the eNOS rate remains unchanged, an increase in the fenestration of the internal elastic lamina (IEL) and a decrease in the diffusive permeability of a thin layer of endothelial surface glycocalyx (ESG) lead to a notable rise in the NO concentration in the vascular wall. The alterations in pore count in IEL and the viscosity of ESG are considered to be involved in the physiological and pathological regulation of NO concentrations.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 6","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189559/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14060747","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nitric oxide (NO) is a well-known member of the reactive oxygen species (ROS) family. The extent of its concentration influences whether it produces beneficial physiological effects or harmful toxic reactions. In a blood system, NO is generally produced by nitric oxide synthase (NOS) in the endothelium. Then, it diffuses into the smooth muscle wall causing a vasodilatation, and it can also be diluted in a lumen blood stream. In the present study, we analyzed a convectional reaction-diffusion of NO in a 3D digital phantom of a short segment of small arteries. NO concentrations were analyzed by applying numerical solutions to the boundary problems, which included the Navier-Stokes equation, Darcy's law, varying consumption of NO, and the dependence of NOS activity on shear stress. All the boundary problems were evaluated using COMSOL Multiphysics software ver. 5.5. The role of two diffusive barriers surrounding the endothelium producing NO was theoretically proven. When the eNOS rate remains unchanged, an increase in the fenestration of the internal elastic lamina (IEL) and a decrease in the diffusive permeability of a thin layer of endothelial surface glycocalyx (ESG) lead to a notable rise in the NO concentration in the vascular wall. The alterations in pore count in IEL and the viscosity of ESG are considered to be involved in the physiological and pathological regulation of NO concentrations.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.