Critical Evaluation and Validation of a High-Throughput Microplate-Based Cupric Reducing Antioxidant Capacity Method for the Analysis of Fish Feed Ingredients.
Aleksander Arnø, Viviana Sarmiento, Odd Elvebø, Pedro Araujo
{"title":"Critical Evaluation and Validation of a High-Throughput Microplate-Based Cupric Reducing Antioxidant Capacity Method for the Analysis of Fish Feed Ingredients.","authors":"Aleksander Arnø, Viviana Sarmiento, Odd Elvebø, Pedro Araujo","doi":"10.3390/antiox14060728","DOIUrl":null,"url":null,"abstract":"<p><p>The cupric ion reducing antioxidant capacity (CUPRAC) assay, originally developed to measure the antioxidant capacity of nutritional products spectrophotometrically, utilized water as the solvent for Trolox. Due to the limited solubility of Trolox in aqueous solutions, the optimization of the solvent system was investigated to enhance analytical performance. Solvent combinations consisting of methanol, ethanol, and water were evaluated to identify the mixture that ensures complete dissolution and maximum absorbance signal, using a ternary plot diagram and mathematical modeling. A methanol/water ratio of 0.64:0.36 was identified as the optimal solvent composition. Under these conditions, the CUPRAC assay demonstrated a linear range of 0-50 μM, a limit of detection of 0.91 μM, and a limit of quantification of 2.75 μM. Precision, expressed as the coefficient of variation, was below 5%, and accuracy-defined as the deviation between nominal and back-calculated concentrations-remained within ±7.0%, in accordance with the variation range recommended by the International Committee on Harmonization. The estimated molar absorption coefficient at the optimized solvent ratio (ε<sub>Trolox</sub> = 2.62 × 10<sup>4</sup> L mol<sup>-1</sup> cm<sup>-1</sup>) was applied to determine the antioxidant capacity of fish commercial feed ingredients containing a mixture of rosemary and olive extracts.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 6","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190020/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14060728","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The cupric ion reducing antioxidant capacity (CUPRAC) assay, originally developed to measure the antioxidant capacity of nutritional products spectrophotometrically, utilized water as the solvent for Trolox. Due to the limited solubility of Trolox in aqueous solutions, the optimization of the solvent system was investigated to enhance analytical performance. Solvent combinations consisting of methanol, ethanol, and water were evaluated to identify the mixture that ensures complete dissolution and maximum absorbance signal, using a ternary plot diagram and mathematical modeling. A methanol/water ratio of 0.64:0.36 was identified as the optimal solvent composition. Under these conditions, the CUPRAC assay demonstrated a linear range of 0-50 μM, a limit of detection of 0.91 μM, and a limit of quantification of 2.75 μM. Precision, expressed as the coefficient of variation, was below 5%, and accuracy-defined as the deviation between nominal and back-calculated concentrations-remained within ±7.0%, in accordance with the variation range recommended by the International Committee on Harmonization. The estimated molar absorption coefficient at the optimized solvent ratio (εTrolox = 2.62 × 104 L mol-1 cm-1) was applied to determine the antioxidant capacity of fish commercial feed ingredients containing a mixture of rosemary and olive extracts.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.