Mixed-Mode Fiber Array Alignment and Coupling to Photonic Integrated Circuits

IF 3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Kamil Gradkowski
{"title":"Mixed-Mode Fiber Array Alignment and Coupling to Photonic Integrated Circuits","authors":"Kamil Gradkowski","doi":"10.1109/TCPMT.2025.3560722","DOIUrl":null,"url":null,"abstract":"This study investigates alignment and coupling between a photonic integrated circuit (PIC) and a mixed-mode fiber array (FA), where one of the channels in the normally single-mode (SM) array is replaced by a multimode fiber (MMF). As a result, the tolerances of alignment are significantly relaxed. The proposed method suggests using the single-mode fiber (SMF) at the input and the MMF at the output of the PIC. In such a transmission configuration, the tolerances are relaxed by a factor of <inline-formula> <tex-math>$\\surd 2$ </tex-math></inline-formula> (41%). As this scales with mode size, the beam-expansion mechanisms, for example, utilizing microlenses, can further significantly reduce the requirements for fabrication and packaging of photonic devices, making them more robust and cheaper to manufacture.","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":"15 6","pages":"1156-1160"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10965704","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Components, Packaging and Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10965704/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates alignment and coupling between a photonic integrated circuit (PIC) and a mixed-mode fiber array (FA), where one of the channels in the normally single-mode (SM) array is replaced by a multimode fiber (MMF). As a result, the tolerances of alignment are significantly relaxed. The proposed method suggests using the single-mode fiber (SMF) at the input and the MMF at the output of the PIC. In such a transmission configuration, the tolerances are relaxed by a factor of $\surd 2$ (41%). As this scales with mode size, the beam-expansion mechanisms, for example, utilizing microlenses, can further significantly reduce the requirements for fabrication and packaging of photonic devices, making them more robust and cheaper to manufacture.
光子集成电路的混合模光纤阵列对准与耦合
本研究研究了光子集成电路(PIC)和混合模光纤阵列(FA)之间的对准和耦合,其中通常单模(SM)阵列中的一个通道被多模光纤(MMF)取代。因此,对中公差明显放宽。该方法建议在PIC的输入端使用单模光纤(SMF),在输出端使用MMF。在这种传动配置中,公差被放宽了2美元(41%)。随着模式尺寸的增大,光束扩展机制,例如,利用微透镜,可以进一步显著降低光子器件的制造和封装要求,使它们更坚固,制造成本更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Components, Packaging and Manufacturing Technology
IEEE Transactions on Components, Packaging and Manufacturing Technology ENGINEERING, MANUFACTURING-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.70
自引率
13.60%
发文量
203
审稿时长
3 months
期刊介绍: IEEE Transactions on Components, Packaging, and Manufacturing Technology publishes research and application articles on modeling, design, building blocks, technical infrastructure, and analysis underpinning electronic, photonic and MEMS packaging, in addition to new developments in passive components, electrical contacts and connectors, thermal management, and device reliability; as well as the manufacture of electronics parts and assemblies, with broad coverage of design, factory modeling, assembly methods, quality, product robustness, and design-for-environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信