{"title":"Mixed-Mode Fiber Array Alignment and Coupling to Photonic Integrated Circuits","authors":"Kamil Gradkowski","doi":"10.1109/TCPMT.2025.3560722","DOIUrl":null,"url":null,"abstract":"This study investigates alignment and coupling between a photonic integrated circuit (PIC) and a mixed-mode fiber array (FA), where one of the channels in the normally single-mode (SM) array is replaced by a multimode fiber (MMF). As a result, the tolerances of alignment are significantly relaxed. The proposed method suggests using the single-mode fiber (SMF) at the input and the MMF at the output of the PIC. In such a transmission configuration, the tolerances are relaxed by a factor of <inline-formula> <tex-math>$\\surd 2$ </tex-math></inline-formula> (41%). As this scales with mode size, the beam-expansion mechanisms, for example, utilizing microlenses, can further significantly reduce the requirements for fabrication and packaging of photonic devices, making them more robust and cheaper to manufacture.","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":"15 6","pages":"1156-1160"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10965704","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Components, Packaging and Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10965704/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates alignment and coupling between a photonic integrated circuit (PIC) and a mixed-mode fiber array (FA), where one of the channels in the normally single-mode (SM) array is replaced by a multimode fiber (MMF). As a result, the tolerances of alignment are significantly relaxed. The proposed method suggests using the single-mode fiber (SMF) at the input and the MMF at the output of the PIC. In such a transmission configuration, the tolerances are relaxed by a factor of $\surd 2$ (41%). As this scales with mode size, the beam-expansion mechanisms, for example, utilizing microlenses, can further significantly reduce the requirements for fabrication and packaging of photonic devices, making them more robust and cheaper to manufacture.
期刊介绍:
IEEE Transactions on Components, Packaging, and Manufacturing Technology publishes research and application articles on modeling, design, building blocks, technical infrastructure, and analysis underpinning electronic, photonic and MEMS packaging, in addition to new developments in passive components, electrical contacts and connectors, thermal management, and device reliability; as well as the manufacture of electronics parts and assemblies, with broad coverage of design, factory modeling, assembly methods, quality, product robustness, and design-for-environment.