Chao Ma, Zhenghan Zhang, Mengdi Zhang, Xudong Tian, Cong Lin, Lei Han, Guangchao Li, Benedict Tsz Woon Lo, Ka-Fu Yung, Haitao Song, Wei Lin, Miguel A. Camblor, Le Xu, Jian Li
{"title":"Accelerated discovery of stable, extra-large-pore nano zeolites with micro-electron diffraction","authors":"Chao Ma, Zhenghan Zhang, Mengdi Zhang, Xudong Tian, Cong Lin, Lei Han, Guangchao Li, Benedict Tsz Woon Lo, Ka-Fu Yung, Haitao Song, Wei Lin, Miguel A. Camblor, Le Xu, Jian Li","doi":"10.1126/science.adv5073","DOIUrl":null,"url":null,"abstract":"<div >Stable zeolites with extra-large pores and nano dimensions that are capable of processing large molecules are in high demand but have been difficult to produce. Their complex structures and nanoscale crystal sizes present challenges for analysis using conventional x-ray diffraction techniques, leading to inefficiencies in material development. We report NJU120-1 and NJU120-2, two robust and fully connected aluminosilicate nano zeolites featuring interconnected channel systems with extra-large 22-ring pores. NJU120-1 is a nanosheet with only about 8-nanometer thickness, corresponding to 1.5 unit cells, and NJU120-2 is a nanorod with 50 by 250 nanometer dimensions. Their synthesis optimization was greatly accelerated through rapid structure determination with MicroED, revealing their multidimensional pore structures. Their very large largest-free-sphere diameters of approximately 1.2 nanometers coupled with nano morphologies enabled catalytic cracking of large molecules.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"388 6754","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adv5073","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Stable zeolites with extra-large pores and nano dimensions that are capable of processing large molecules are in high demand but have been difficult to produce. Their complex structures and nanoscale crystal sizes present challenges for analysis using conventional x-ray diffraction techniques, leading to inefficiencies in material development. We report NJU120-1 and NJU120-2, two robust and fully connected aluminosilicate nano zeolites featuring interconnected channel systems with extra-large 22-ring pores. NJU120-1 is a nanosheet with only about 8-nanometer thickness, corresponding to 1.5 unit cells, and NJU120-2 is a nanorod with 50 by 250 nanometer dimensions. Their synthesis optimization was greatly accelerated through rapid structure determination with MicroED, revealing their multidimensional pore structures. Their very large largest-free-sphere diameters of approximately 1.2 nanometers coupled with nano morphologies enabled catalytic cracking of large molecules.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.