Additive Manufacturing, Thermoplastics, CAD Technology, and Reverse Engineering in Orthopedics and Neurosurgery-Applications to Preventions and Treatment of Infections.
Gabriel Burato Ortis, Franco Camargo Zapparoli, Leticia Ramos Dantas, Paula Hansen Suss, Jamil Faissal Soni, Celso Júnio Aguiar Mendonça, Gustavo Henrique Loesch, Maíra de Mayo Oliveira Nogueira Loesch, Felipe Francisco Tuon
{"title":"Additive Manufacturing, Thermoplastics, CAD Technology, and Reverse Engineering in Orthopedics and Neurosurgery-Applications to Preventions and Treatment of Infections.","authors":"Gabriel Burato Ortis, Franco Camargo Zapparoli, Leticia Ramos Dantas, Paula Hansen Suss, Jamil Faissal Soni, Celso Júnio Aguiar Mendonça, Gustavo Henrique Loesch, Maíra de Mayo Oliveira Nogueira Loesch, Felipe Francisco Tuon","doi":"10.3390/antibiotics14060565","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing demand for orthopedic and neurosurgical implants has driven advancements in biomaterials, additive manufacturing, and antimicrobial strategies. With an increasingly aging population, and a high incidence of orthopedic trauma in developing countries, the need for effective, biocompatible, and infection-resistant implants is more critical than ever. This review explores the role of polymers in 3D printing for medical applications, focusing on their use in orthopedic and neurosurgical implants. Polylactic acid (PLA), polycaprolactone (PCL), and polyetheretherketone (PEEK) have gained attention due to their biocompatibility, mechanical properties, and potential for antimicrobial modifications. A major challenge in implantology is the risk of periprosthetic joint infections (PJI) and surgical site infections (SSI). Current strategies, such as antibiotic-loaded polymethylmethacrylate (PMMA) spacers and bioactive coatings, aim to reduce infection rates, but limitations remain. Additive manufacturing enables the creation of customized implants with tailored porosity for enhanced osseointegration while allowing for the incorporation of antimicrobial agents. Future perspectives include the integration of artificial intelligence for implant design, nanotechnology for smart coatings, and bioresorbable scaffolds for improved bone regeneration. Advancing these technologies will lead to more efficient, cost-effective, and patient-specific solutions, ultimately reducing infection rates and improving long-term clinical outcomes.</p>","PeriodicalId":54246,"journal":{"name":"Antibiotics-Basel","volume":"14 6","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189627/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibiotics-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antibiotics14060565","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing demand for orthopedic and neurosurgical implants has driven advancements in biomaterials, additive manufacturing, and antimicrobial strategies. With an increasingly aging population, and a high incidence of orthopedic trauma in developing countries, the need for effective, biocompatible, and infection-resistant implants is more critical than ever. This review explores the role of polymers in 3D printing for medical applications, focusing on their use in orthopedic and neurosurgical implants. Polylactic acid (PLA), polycaprolactone (PCL), and polyetheretherketone (PEEK) have gained attention due to their biocompatibility, mechanical properties, and potential for antimicrobial modifications. A major challenge in implantology is the risk of periprosthetic joint infections (PJI) and surgical site infections (SSI). Current strategies, such as antibiotic-loaded polymethylmethacrylate (PMMA) spacers and bioactive coatings, aim to reduce infection rates, but limitations remain. Additive manufacturing enables the creation of customized implants with tailored porosity for enhanced osseointegration while allowing for the incorporation of antimicrobial agents. Future perspectives include the integration of artificial intelligence for implant design, nanotechnology for smart coatings, and bioresorbable scaffolds for improved bone regeneration. Advancing these technologies will lead to more efficient, cost-effective, and patient-specific solutions, ultimately reducing infection rates and improving long-term clinical outcomes.
Antibiotics-BaselPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
7.30
自引率
14.60%
发文量
1547
审稿时长
11 weeks
期刊介绍:
Antibiotics (ISSN 2079-6382) is an open access, peer reviewed journal on all aspects of antibiotics. Antibiotics is a multi-disciplinary journal encompassing the general fields of biochemistry, chemistry, genetics, microbiology and pharmacology. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers.