Artificial neural network and machine learning predictive model for assessing physicochemical properties of garlic slices (Allium sativum L.) during microwave-assisted convective drying process

IF 8.2 1区 农林科学 Q1 CHEMISTRY, APPLIED
Hany S. El-Mesery , Abdulaziz Nuhu Jibril , Ahmed H. ElMesiry , Zicheng Hu , Xinai Zhang , Amer Ali Mahdi
{"title":"Artificial neural network and machine learning predictive model for assessing physicochemical properties of garlic slices (Allium sativum L.) during microwave-assisted convective drying process","authors":"Hany S. El-Mesery ,&nbsp;Abdulaziz Nuhu Jibril ,&nbsp;Ahmed H. ElMesiry ,&nbsp;Zicheng Hu ,&nbsp;Xinai Zhang ,&nbsp;Amer Ali Mahdi","doi":"10.1016/j.fochx.2025.102703","DOIUrl":null,"url":null,"abstract":"<div><div>This study evaluates the physicochemical characteristics of garlic slices dried using a microwave-assisted convective dryer controlled by an artificial neural network. The chosen drying conditions included: microwave power (100, 200, and 300 W), air temperatures (45, 55, and 65 °C), and airflow velocity (0.3, 0.5, and 1.0 m/s). Results showed that at 65 °C, 300 W, and 0.3 m/s, the minimum flavor was 4.95 mg/g dry mass, marking a 39.50 % reduction in allicin content. The highest vitamin C content of 0.1751 mg/g with a water activity level of 0.505 was recorded at drying conditions of 1.0 m/s, 45 °C, and 100 W. However, it was observed that increasing power to 300 W at 45 °C and 0.5 m/s improved the rehydration ratio by 15.53 %. This study utilized precise ANN modelling to achieve an excellent fit by clarifying the interactions among drying parameters, time, and physicochemical parameters. PCA highlighted notable similarities between total color changes and rehydration ratios of garlic samples. Integrating an ANN into microwave-convective drying provides advanced tools to optimize food drying processes, thereby enhancing productivity without compromising product quality.</div></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"29 ","pages":"Article 102703"},"PeriodicalIF":8.2000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157525005504","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates the physicochemical characteristics of garlic slices dried using a microwave-assisted convective dryer controlled by an artificial neural network. The chosen drying conditions included: microwave power (100, 200, and 300 W), air temperatures (45, 55, and 65 °C), and airflow velocity (0.3, 0.5, and 1.0 m/s). Results showed that at 65 °C, 300 W, and 0.3 m/s, the minimum flavor was 4.95 mg/g dry mass, marking a 39.50 % reduction in allicin content. The highest vitamin C content of 0.1751 mg/g with a water activity level of 0.505 was recorded at drying conditions of 1.0 m/s, 45 °C, and 100 W. However, it was observed that increasing power to 300 W at 45 °C and 0.5 m/s improved the rehydration ratio by 15.53 %. This study utilized precise ANN modelling to achieve an excellent fit by clarifying the interactions among drying parameters, time, and physicochemical parameters. PCA highlighted notable similarities between total color changes and rehydration ratios of garlic samples. Integrating an ANN into microwave-convective drying provides advanced tools to optimize food drying processes, thereby enhancing productivity without compromising product quality.

Abstract Image

微波辅助对流干燥大蒜片理化性质的人工神经网络和机器学习预测模型
本研究利用人工神经网络控制的微波辅助对流干燥机对大蒜片进行干燥后的理化特性评价。选择的干燥条件包括:微波功率(100、200和300 W),空气温度(45、55和65℃),风速(0.3、0.5和1.0 m/s)。结果表明,在65℃、300 W、0.3 m/s条件下,大蒜素含量降低39.50%,最小风味为4.95 mg/g干质量。在1.0 m/s、45℃、100 W的干燥条件下,维生素C含量最高,为0.1751 mg/g,水分活度为0.505。然而,在45°C和0.5 m/s的条件下,将功率提高到300 W,再水化率提高了15.53%。本研究利用精确的人工神经网络建模,通过澄清干燥参数、时间和物理化学参数之间的相互作用,实现了良好的拟合。PCA强调了大蒜样品的总颜色变化和复水化比率之间的显著相似性。将人工神经网络集成到微波对流干燥中提供了先进的工具来优化食品干燥过程,从而在不影响产品质量的情况下提高生产率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Chemistry: X
Food Chemistry: X CHEMISTRY, APPLIED-
CiteScore
4.90
自引率
6.60%
发文量
315
审稿时长
55 days
期刊介绍: Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信