Solid-state fermentation of pristinamycin by Streptomyces pristinaespiralis NRRL ISP-5338 using D-optimal design.

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Muath Suliman, Amr S Bishr, Sally T K Tohamy, Mohammad Y Alshahrani, Khaled M Aboshanab
{"title":"Solid-state fermentation of pristinamycin by Streptomyces pristinaespiralis NRRL ISP-5338 using D-optimal design.","authors":"Muath Suliman, Amr S Bishr, Sally T K Tohamy, Mohammad Y Alshahrani, Khaled M Aboshanab","doi":"10.1007/s00449-025-03188-4","DOIUrl":null,"url":null,"abstract":"<p><p>Pristinamycin (PST), produced by Streptomyces pristinaespiralis NRRL ISP-5338, is a streptogramin antibiotic with remarkably broad-spectrum bactericidal activity. The production of PST from its natural producer remains challenging. In the literature, a few reports examined PST production using submerged liquid fermentation (SLF). However, the literature survey revealed no reports that studied its production using solid-state fermentation (SSF). To our knowledge, this is the first report about the production optimization of PST using SSF. Therefore, in this study, we aimed to optimize various nutritional and environmental factors influencing its production as one-factor-at-a-time (OFAT) or as a multifactorial response surface method (RSM) using SSF. Three factors, including types of solid substrates, composition of the moistening broth, and incubation time, were optimized as OFAT. The OFAT optimal conditions were wheat bran as a solid substrate, IPS5 as a moistening broth, and 9 days as incubation time. These conditions increased PST production from 0.395 to 0.467 mg/g initial dry substrate (IDS). Using RSM, three factors--the initial pH of the moistening broth, the incubation temperature, and the inoculum size (v/w)--were statistically optimized, and the model was statistically significant with a p-value < 0.05. It resulted in a 2.3-fold increase in PST production (0.910 mg/g IDS) compared to the unoptimized SSF conditions (0.395 mg/g IDS) and a 5.35-fold increase from that obtained by the SLF (0.170 mg /mL). In conclusion, the SSF is an efficient and simple method for PST production, and the optimized conditions are highly recommended for scaling up.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-025-03188-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pristinamycin (PST), produced by Streptomyces pristinaespiralis NRRL ISP-5338, is a streptogramin antibiotic with remarkably broad-spectrum bactericidal activity. The production of PST from its natural producer remains challenging. In the literature, a few reports examined PST production using submerged liquid fermentation (SLF). However, the literature survey revealed no reports that studied its production using solid-state fermentation (SSF). To our knowledge, this is the first report about the production optimization of PST using SSF. Therefore, in this study, we aimed to optimize various nutritional and environmental factors influencing its production as one-factor-at-a-time (OFAT) or as a multifactorial response surface method (RSM) using SSF. Three factors, including types of solid substrates, composition of the moistening broth, and incubation time, were optimized as OFAT. The OFAT optimal conditions were wheat bran as a solid substrate, IPS5 as a moistening broth, and 9 days as incubation time. These conditions increased PST production from 0.395 to 0.467 mg/g initial dry substrate (IDS). Using RSM, three factors--the initial pH of the moistening broth, the incubation temperature, and the inoculum size (v/w)--were statistically optimized, and the model was statistically significant with a p-value < 0.05. It resulted in a 2.3-fold increase in PST production (0.910 mg/g IDS) compared to the unoptimized SSF conditions (0.395 mg/g IDS) and a 5.35-fold increase from that obtained by the SLF (0.170 mg /mL). In conclusion, the SSF is an efficient and simple method for PST production, and the optimized conditions are highly recommended for scaling up.

原始螺旋链霉菌NRRL ISP-5338固态发酵原始霉素的d-最优设计。
原生螺旋体链霉菌(Streptomyces pristinaspiralis NRRL ISP-5338)是一种具有广谱杀菌活性的链霉素类抗生素。从其天然生产者生产PST仍然具有挑战性。在文献中,有一些报道研究了利用液体浸没发酵(SLF)生产PST。然而,文献调查显示,没有报道研究其生产固态发酵(SSF)。据我们所知,这是关于使用SSF优化PST生产的第一份报告。因此,在本研究中,我们旨在通过单因子单次(OFAT)或多因子响应面法(RSM)利用SSF优化影响其生产的各种营养和环境因素。对固体基质类型、润湿肉汤组成和孵育时间三个因素进行了优化。OFAT的最佳发酵条件为麦麸为固体底物,IPS5为润湿肉汤,培养时间为9 d。这些条件使初始干底物(IDS)的PST产量从0.395提高到0.467 mg/g。利用RSM对润湿肉汤初始pH、孵育温度、接种量(v/w) 3个因素进行了统计优化,模型具有显著的p值
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioprocess and Biosystems Engineering
Bioprocess and Biosystems Engineering 工程技术-工程:化工
CiteScore
7.90
自引率
2.60%
发文量
147
审稿时长
2.6 months
期刊介绍: Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes. Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged. The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信