Yulu Zhang , Zhiwei Chen , Xinghui Dong , Hongyan Dui , Min Chang , Junqiang Bai
{"title":"Multi-source-data-driven microgrids reliability analysis via power supply chain using deep learning","authors":"Yulu Zhang , Zhiwei Chen , Xinghui Dong , Hongyan Dui , Min Chang , Junqiang Bai","doi":"10.1016/j.ress.2025.111376","DOIUrl":null,"url":null,"abstract":"<div><div>Microgrid reliability is the ability to maintain a stable energy supply in a variable environment. However, such an environment (wind direction, temperature, humidity, pressure, and wind speed) renders the power supply with randomness, intermittency, and volatility. To ensure power stability in variable environments, a data-driven microgrid (DDMG) reliability analysis method is proposed based on the power supply chain (PSC) model, which fully considers the data-dependent output power. Firstly, a convolutional neural network-support vector machine (CNN-SVM) model is developed to effectively fuse multi-source data features. Secondly, a temporal convolutional network-bidirectional gated recurrent unit (TCN-BiGRU) approach is introduced to capture temporal dependencies to predict equipment states. The above two deep learning models provide accurate input values for reliability assessment. Then, a reliability assessment model is established based on the PSC model, complemented by an importance-measure-based reliability improvement strategy. Finally, the feasibility of methodology is validated with a case. The results show that compared with the traditional methods, the classification accuracy of CNN-SVM is up to 98.9747 %, the R<sup>2</sup> of TCN-BiGRU is up to 96.1962 %, and the recovered ranking based on the importance measure markedly and stably improves the reliability, which would guide microgrid reliability design.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"264 ","pages":"Article 111376"},"PeriodicalIF":9.4000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832025005770","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microgrid reliability is the ability to maintain a stable energy supply in a variable environment. However, such an environment (wind direction, temperature, humidity, pressure, and wind speed) renders the power supply with randomness, intermittency, and volatility. To ensure power stability in variable environments, a data-driven microgrid (DDMG) reliability analysis method is proposed based on the power supply chain (PSC) model, which fully considers the data-dependent output power. Firstly, a convolutional neural network-support vector machine (CNN-SVM) model is developed to effectively fuse multi-source data features. Secondly, a temporal convolutional network-bidirectional gated recurrent unit (TCN-BiGRU) approach is introduced to capture temporal dependencies to predict equipment states. The above two deep learning models provide accurate input values for reliability assessment. Then, a reliability assessment model is established based on the PSC model, complemented by an importance-measure-based reliability improvement strategy. Finally, the feasibility of methodology is validated with a case. The results show that compared with the traditional methods, the classification accuracy of CNN-SVM is up to 98.9747 %, the R2 of TCN-BiGRU is up to 96.1962 %, and the recovered ranking based on the importance measure markedly and stably improves the reliability, which would guide microgrid reliability design.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.