{"title":"On matrices in finite free position","authors":"Octavio Arizmendi, Franz Lehner , Amnon Rosenmann","doi":"10.1016/j.laa.2025.06.016","DOIUrl":null,"url":null,"abstract":"<div><div>We study pairs <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> of square matrices that are in additive (resp. multiplicative) finite free position, that is, the characteristic polynomial <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>A</mi><mo>+</mo><mi>B</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> (resp. <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>A</mi><mi>B</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>) equals the additive finite free convolution <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>⊞</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> (resp. the multiplicative finite free convolution <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>⊠</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>), which equals the expected characteristic polynomial <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>U</mi></mrow></msub><mspace></mspace><mo>[</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>A</mi><mo>+</mo><msup><mrow><mi>U</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>B</mi><mi>U</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>]</mo></math></span> (resp. <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>U</mi></mrow></msub><mspace></mspace><mo>[</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>A</mi><msup><mrow><mi>U</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>B</mi><mi>U</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>]</mo></math></span>) over the set of unitary matrices <em>U</em>. We examine the lattice of (non-irreducible) affine algebraic sets of matrices consisting of finite free complementary pairs with respect to the additive (resp. multiplicative) convolution. We show that these pairs include the diagonal matrices vs. the principally balanced matrices, the upper (lower) triangular matrices vs. the upper (lower) triangular matrices with constant diagonal, and the scalar matrices vs. the set of all square matrices.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"724 ","pages":"Pages 137-170"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002437952500268X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study pairs of square matrices that are in additive (resp. multiplicative) finite free position, that is, the characteristic polynomial (resp. ) equals the additive finite free convolution (resp. the multiplicative finite free convolution ), which equals the expected characteristic polynomial (resp. ) over the set of unitary matrices U. We examine the lattice of (non-irreducible) affine algebraic sets of matrices consisting of finite free complementary pairs with respect to the additive (resp. multiplicative) convolution. We show that these pairs include the diagonal matrices vs. the principally balanced matrices, the upper (lower) triangular matrices vs. the upper (lower) triangular matrices with constant diagonal, and the scalar matrices vs. the set of all square matrices.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.