On matrices in finite free position

IF 1.1 3区 数学 Q1 MATHEMATICS
Octavio Arizmendi, Franz Lehner , Amnon Rosenmann
{"title":"On matrices in finite free position","authors":"Octavio Arizmendi,&nbsp;Franz Lehner ,&nbsp;Amnon Rosenmann","doi":"10.1016/j.laa.2025.06.016","DOIUrl":null,"url":null,"abstract":"<div><div>We study pairs <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> of square matrices that are in additive (resp. multiplicative) finite free position, that is, the characteristic polynomial <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>A</mi><mo>+</mo><mi>B</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> (resp. <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>A</mi><mi>B</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>) equals the additive finite free convolution <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>⊞</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> (resp. the multiplicative finite free convolution <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>⊠</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>), which equals the expected characteristic polynomial <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>U</mi></mrow></msub><mspace></mspace><mo>[</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>A</mi><mo>+</mo><msup><mrow><mi>U</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>B</mi><mi>U</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>]</mo></math></span> (resp. <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>U</mi></mrow></msub><mspace></mspace><mo>[</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>A</mi><msup><mrow><mi>U</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>B</mi><mi>U</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>]</mo></math></span>) over the set of unitary matrices <em>U</em>. We examine the lattice of (non-irreducible) affine algebraic sets of matrices consisting of finite free complementary pairs with respect to the additive (resp. multiplicative) convolution. We show that these pairs include the diagonal matrices vs. the principally balanced matrices, the upper (lower) triangular matrices vs. the upper (lower) triangular matrices with constant diagonal, and the scalar matrices vs. the set of all square matrices.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"724 ","pages":"Pages 137-170"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002437952500268X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study pairs (A,B) of square matrices that are in additive (resp. multiplicative) finite free position, that is, the characteristic polynomial χA+B(x) (resp. χAB(x)) equals the additive finite free convolution χA(x)χB(x) (resp. the multiplicative finite free convolution χA(x)χB(x)), which equals the expected characteristic polynomial EU[χA+UBU(x)] (resp. EU[χAUBU(x)]) over the set of unitary matrices U. We examine the lattice of (non-irreducible) affine algebraic sets of matrices consisting of finite free complementary pairs with respect to the additive (resp. multiplicative) convolution. We show that these pairs include the diagonal matrices vs. the principally balanced matrices, the upper (lower) triangular matrices vs. the upper (lower) triangular matrices with constant diagonal, and the scalar matrices vs. the set of all square matrices.
在有限自由位置的矩阵上
我们研究了方阵对(A,B),它们是可加性的。乘性)有限自由位置,即特征多项式χA+B(x) (resp。χA(x) =加性有限自由卷积χA(x) χB(x) (p. x)。乘性有限自由卷积χA(x)⊠χB(x)),它等于期望的特征多项式EU[χA+U BU(x)]。EU[χAU BU(x)])在酉矩阵集合u上。我们研究了由有限自由互补对组成的矩阵(不可约)仿射代数集的格。乘法)卷积。我们证明了这些对包括对角矩阵与主平衡矩阵,上(下)三角矩阵与上(下)三角矩阵具有恒定对角,标量矩阵与所有方阵的集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信