Improving SVM performance through data reduction and misclassification analysis with linear programming.

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Carlos Aníbal Suárez,Mauricio Castro,Mariuxi Leon,Carlos Martin-Barreiro,Michael Liut
{"title":"Improving SVM performance through data reduction and misclassification analysis with linear programming.","authors":"Carlos Aníbal Suárez,Mauricio Castro,Mariuxi Leon,Carlos Martin-Barreiro,Michael Liut","doi":"10.1007/s40747-025-01989-4","DOIUrl":null,"url":null,"abstract":"In the dual optimization problem behind Support Vector Machine (SVM), each data point corresponds to a decision variable. Therefore, removing data points is equivalent to reducing the dimensionality of the dual problem, leading to a more efficient optimization process. We introduce linear programming models to determine whether two sets of points are linearly separable efficiently, compute the misclassification rate, and reduce the dimension of the optimization problems behind the SVM procedure. Data reduction can be conducted using a simple convexity property for the linearly separable case. The misclassification rate is a key indicator of the complexity of separating the two sets, providing valuable insights into the classification performance. Our approach combines SVM optimization with linear programming techniques to offer a comprehensive classification and complexity analysis framework.","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"16 1","pages":"356"},"PeriodicalIF":5.0000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01989-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In the dual optimization problem behind Support Vector Machine (SVM), each data point corresponds to a decision variable. Therefore, removing data points is equivalent to reducing the dimensionality of the dual problem, leading to a more efficient optimization process. We introduce linear programming models to determine whether two sets of points are linearly separable efficiently, compute the misclassification rate, and reduce the dimension of the optimization problems behind the SVM procedure. Data reduction can be conducted using a simple convexity property for the linearly separable case. The misclassification rate is a key indicator of the complexity of separating the two sets, providing valuable insights into the classification performance. Our approach combines SVM optimization with linear programming techniques to offer a comprehensive classification and complexity analysis framework.
通过线性规划的数据约简和误分类分析提高支持向量机性能。
在支持向量机(SVM)背后的对偶优化问题中,每个数据点对应一个决策变量。因此,去除数据点相当于降低了对偶问题的维数,从而实现了更高效的优化过程。我们引入线性规划模型来有效地确定两组点是否线性可分,计算错分类率,并降低支持向量机过程背后优化问题的维数。对于线性可分的情况,可以使用简单的凸性来进行数据约简。误分类率是区分两组数据复杂性的关键指标,为分类性能提供了有价值的见解。我们的方法将支持向量机优化与线性规划技术相结合,提供了一个全面的分类和复杂性分析框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信