Upper bound of the multiplicity of Laplacian eigenvalue 1 of trees

IF 1 3区 数学 Q1 MATHEMATICS
Fenglei Tian , Juan Wang , Wenyao Song
{"title":"Upper bound of the multiplicity of Laplacian eigenvalue 1 of trees","authors":"Fenglei Tian ,&nbsp;Juan Wang ,&nbsp;Wenyao Song","doi":"10.1016/j.laa.2025.06.013","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>T</em> be a tree of order <span><math><mi>n</mi><mo>(</mo><mo>≥</mo><mn>6</mn><mo>)</mo></math></span>. The number of pendant vertices (resp., quasi-pendant vertices) of <em>T</em> is denoted by <span><math><mi>p</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> (resp., <span><math><mi>q</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span>). Let <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> denote the multiplicity of <em>λ</em> as a Laplacian eigenvalue of <em>T</em>. The multiplicity of 1 as a Laplacian eigenvalue of <em>T</em> has attracted much attention. In this paper, we first prove that<span><span><span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></msub><mo>(</mo><mn>1</mn><mo>)</mo><mo>=</mo><mi>p</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>−</mo><mi>q</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mover><mrow><mi>T</mi></mrow><mo>‾</mo></mover><mo>)</mo></mrow></msub><mo>(</mo><mn>1</mn><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><mover><mrow><mi>T</mi></mrow><mo>‾</mo></mover></math></span> is called the reduced tree of <em>T</em>, obtained from <em>T</em> by deleting some pendant vertices such that <span><math><mi>p</mi><mo>(</mo><mover><mrow><mi>T</mi></mrow><mo>‾</mo></mover><mo>)</mo><mo>=</mo><mi>q</mi><mo>(</mo><mover><mrow><mi>T</mi></mrow><mo>‾</mo></mover><mo>)</mo></math></span>. Further, for each reduced tree <em>T</em> of order <span><math><mi>n</mi><mo>(</mo><mo>≥</mo><mn>6</mn><mo>)</mo></math></span>, we prove that<span><span><span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></msub><mo>(</mo><mn>1</mn><mo>)</mo><mo>≤</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>,</mo></math></span></span></span> and the structure of the extremal trees attaining the upper bound is characterized completely.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"724 ","pages":"Pages 108-119"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002654","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let T be a tree of order n(6). The number of pendant vertices (resp., quasi-pendant vertices) of T is denoted by p(T) (resp., q(T)). Let mL(T)(λ) denote the multiplicity of λ as a Laplacian eigenvalue of T. The multiplicity of 1 as a Laplacian eigenvalue of T has attracted much attention. In this paper, we first prove thatmL(T)(1)=p(T)q(T)+mL(T)(1), where T is called the reduced tree of T, obtained from T by deleting some pendant vertices such that p(T)=q(T). Further, for each reduced tree T of order n(6), we prove thatmL(T)(1)n24, and the structure of the extremal trees attaining the upper bound is characterized completely.
树的拉普拉斯特征值1的多重性的上界
设T为n阶(≥6)树。挂起顶点的数量(例如:, T的拟垂顶点)表示为p(T) (p。问(T))。设mL(T)(λ)表示λ作为T的拉普拉斯特征值的多重性。1作为T的拉普拉斯特征值的多重性引起了人们的广泛关注。在本文中,我们首先证明了mL(T)(1)=p(T)−q(T)+mL(T)(1),其中T被称为T的简化树,通过删除一些垂顶点使p(T) =q(T)从T中得到。进一步,对每一阶n(≥6)的约简树T,我们证明了ml (T)(1)≤n−24,并完全表征了达到上界的极值树的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信