Machine learning revealed giant thermal conductivity reduction by strong phonon localization in two-angle disordered twisted multilayer graphene

IF 11.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jingwen Wang, Zheng Zhu, Tianran Jiang, Ke Chen
{"title":"Machine learning revealed giant thermal conductivity reduction by strong phonon localization in two-angle disordered twisted multilayer graphene","authors":"Jingwen Wang, Zheng Zhu, Tianran Jiang, Ke Chen","doi":"10.1038/s41524-025-01678-3","DOIUrl":null,"url":null,"abstract":"<p>In two-dimensional (2D) layer-stacked materials, the twist angle between layers provides extensive freedom to explore novel physics and engineer remarkable thermal transport properties. We discovered that the cross-plane thermal conductivity of multilayer graphene can be effectively controlled by arranging the layers with two specific twist angles in a defined sequence. Disorderly aperiodic twisted graphene layers lead to the localization of phonons, substantially reducing the cross-plane thermal transport via the interference of coherent phonons. We employed non-equilibrium molecular dynamics simulations combined with machine learning approach, to study heat transport in the two-angle disordered multilayer stacks, and identified within the constrained structural space the optimal stacking sequence that can minimize the cross-plane thermal conductivity. Compared to pristine graphite, the optimized structure can reduce thermal conductivity by up to 80%. Through analysis of phonon transport properties across different structures, we revealed the underlying physical mechanism of phonon localization.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"269 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01678-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In two-dimensional (2D) layer-stacked materials, the twist angle between layers provides extensive freedom to explore novel physics and engineer remarkable thermal transport properties. We discovered that the cross-plane thermal conductivity of multilayer graphene can be effectively controlled by arranging the layers with two specific twist angles in a defined sequence. Disorderly aperiodic twisted graphene layers lead to the localization of phonons, substantially reducing the cross-plane thermal transport via the interference of coherent phonons. We employed non-equilibrium molecular dynamics simulations combined with machine learning approach, to study heat transport in the two-angle disordered multilayer stacks, and identified within the constrained structural space the optimal stacking sequence that can minimize the cross-plane thermal conductivity. Compared to pristine graphite, the optimized structure can reduce thermal conductivity by up to 80%. Through analysis of phonon transport properties across different structures, we revealed the underlying physical mechanism of phonon localization.

Abstract Image

机器学习揭示了双角无序扭曲多层石墨烯中强声子局域化的巨大热导率降低
在二维(2D)层堆叠材料中,层之间的扭转角为探索新物理和设计显着的热输运特性提供了广泛的自由。我们发现多层石墨烯的平面热导率可以通过以两个特定的扭曲角度按一定的顺序排列来有效地控制。无序的非周期扭曲石墨烯层导致声子的局域化,大大减少了通过相干声子干涉的跨平面热输运。采用非平衡态分子动力学模拟与机器学习相结合的方法,研究了双角度无序多层叠层中的热传递,并在约束结构空间内确定了使平面导热系数最小的最佳叠层顺序。与原始石墨相比,优化后的结构可以将导热系数降低80%。通过对不同结构间声子输运特性的分析,揭示了声子局部化的物理机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信