Optimization of air supply parameters for predicting indoor temperature and humidity under indoor mold index constraints

IF 7.1 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Kaiyun Jiang , Norhayati Mahyuddin , Tianyu Shi , Haowei Yu , Yanan Li
{"title":"Optimization of air supply parameters for predicting indoor temperature and humidity under indoor mold index constraints","authors":"Kaiyun Jiang ,&nbsp;Norhayati Mahyuddin ,&nbsp;Tianyu Shi ,&nbsp;Haowei Yu ,&nbsp;Yanan Li","doi":"10.1016/j.enbuild.2025.116050","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a framework for optimizing MVAC air supply settings to reduce mold growth, improve energy efficiency, and maintain occupant comfort. It combines a predictive model for indoor temperature and humidity with a Non-dominated Sorting Genetic Algorithm III (NSGA-III) for optimization. Historical data is used to predict conditions at ceiling points, while the optimization process considers energy consumption, PMV (Predicted Mean Vote), and the VTT mold index. Comparing the ideal point method and the TOPSIS method, the former proves more effective for air supply optimization. The study highlights the importance of including the VTT mold index in optimization strategies, achieving an 88% improvement in mold control and a 74.74% improvement in thermal comfort. This framework offers a more sustainable and efficient approach to building management through data-driven optimization.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"345 ","pages":"Article 116050"},"PeriodicalIF":7.1000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778825007807","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a framework for optimizing MVAC air supply settings to reduce mold growth, improve energy efficiency, and maintain occupant comfort. It combines a predictive model for indoor temperature and humidity with a Non-dominated Sorting Genetic Algorithm III (NSGA-III) for optimization. Historical data is used to predict conditions at ceiling points, while the optimization process considers energy consumption, PMV (Predicted Mean Vote), and the VTT mold index. Comparing the ideal point method and the TOPSIS method, the former proves more effective for air supply optimization. The study highlights the importance of including the VTT mold index in optimization strategies, achieving an 88% improvement in mold control and a 74.74% improvement in thermal comfort. This framework offers a more sustainable and efficient approach to building management through data-driven optimization.
室内霉菌指数约束下预测室内温湿度的送风参数优化
本研究介绍了优化MVAC送风设置的框架,以减少霉菌生长,提高能源效率,并保持居住者的舒适度。将室内温湿度预测模型与非支配排序遗传算法(NSGA-III)相结合进行优化。历史数据用于预测天花板点的条件,而优化过程考虑能源消耗、PMV(预测平均投票)和VTT模具指数。将理想点法与TOPSIS法进行比较,结果表明理想点法对优化送风更为有效。该研究强调了将VTT模具指数纳入优化策略的重要性,模具控制提高了88%,热舒适性提高了74.74%。该框架通过数据驱动的优化为建筑管理提供了一种更可持续、更有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and Buildings
Energy and Buildings 工程技术-工程:土木
CiteScore
12.70
自引率
11.90%
发文量
863
审稿时长
38 days
期刊介绍: An international journal devoted to investigations of energy use and efficiency in buildings Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信