C. Abert, F. Bruckner, A. Voronov, M. Lang, S. A. Pathak, S. Holt, R. Kraft, R. Allayarov, P. Flauger, S. Koraltan, T. Schrefl, A. Chumak, H. Fangohr, D. Suess
{"title":"NeuralMag: an open-source nodal finite-difference code for inverse micromagnetics","authors":"C. Abert, F. Bruckner, A. Voronov, M. Lang, S. A. Pathak, S. Holt, R. Kraft, R. Allayarov, P. Flauger, S. Koraltan, T. Schrefl, A. Chumak, H. Fangohr, D. Suess","doi":"10.1038/s41524-025-01688-1","DOIUrl":null,"url":null,"abstract":"<p>We present NeuralMag, a flexible and high-performance open-source Python library for micromagnetic simulations. NeuralMag leverages modern machine learning frameworks, such as PyTorch and JAX, to perform efficient tensor operations on various parallel hardware, including CPUs, GPUs, and TPUs. The library implements a novel nodal finite-difference discretization scheme that provides improved accuracy over traditional finite-difference methods without increasing computational complexity. NeuralMag is particularly well-suited for solving inverse problems, especially those with time-dependent objectives, thanks to its automatic differentiation capabilities. Performance benchmarks show that NeuralMag is competitive with state-of-the-art simulation codes while offering enhanced flexibility through its Python interface and integration with high-level computational backends.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"608 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01688-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We present NeuralMag, a flexible and high-performance open-source Python library for micromagnetic simulations. NeuralMag leverages modern machine learning frameworks, such as PyTorch and JAX, to perform efficient tensor operations on various parallel hardware, including CPUs, GPUs, and TPUs. The library implements a novel nodal finite-difference discretization scheme that provides improved accuracy over traditional finite-difference methods without increasing computational complexity. NeuralMag is particularly well-suited for solving inverse problems, especially those with time-dependent objectives, thanks to its automatic differentiation capabilities. Performance benchmarks show that NeuralMag is competitive with state-of-the-art simulation codes while offering enhanced flexibility through its Python interface and integration with high-level computational backends.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.