NeuralMag: an open-source nodal finite-difference code for inverse micromagnetics

IF 11.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
C. Abert, F. Bruckner, A. Voronov, M. Lang, S. A. Pathak, S. Holt, R. Kraft, R. Allayarov, P. Flauger, S. Koraltan, T. Schrefl, A. Chumak, H. Fangohr, D. Suess
{"title":"NeuralMag: an open-source nodal finite-difference code for inverse micromagnetics","authors":"C. Abert, F. Bruckner, A. Voronov, M. Lang, S. A. Pathak, S. Holt, R. Kraft, R. Allayarov, P. Flauger, S. Koraltan, T. Schrefl, A. Chumak, H. Fangohr, D. Suess","doi":"10.1038/s41524-025-01688-1","DOIUrl":null,"url":null,"abstract":"<p>We present NeuralMag, a flexible and high-performance open-source Python library for micromagnetic simulations. NeuralMag leverages modern machine learning frameworks, such as PyTorch and JAX, to perform efficient tensor operations on various parallel hardware, including CPUs, GPUs, and TPUs. The library implements a novel nodal finite-difference discretization scheme that provides improved accuracy over traditional finite-difference methods without increasing computational complexity. NeuralMag is particularly well-suited for solving inverse problems, especially those with time-dependent objectives, thanks to its automatic differentiation capabilities. Performance benchmarks show that NeuralMag is competitive with state-of-the-art simulation codes while offering enhanced flexibility through its Python interface and integration with high-level computational backends.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"608 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01688-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We present NeuralMag, a flexible and high-performance open-source Python library for micromagnetic simulations. NeuralMag leverages modern machine learning frameworks, such as PyTorch and JAX, to perform efficient tensor operations on various parallel hardware, including CPUs, GPUs, and TPUs. The library implements a novel nodal finite-difference discretization scheme that provides improved accuracy over traditional finite-difference methods without increasing computational complexity. NeuralMag is particularly well-suited for solving inverse problems, especially those with time-dependent objectives, thanks to its automatic differentiation capabilities. Performance benchmarks show that NeuralMag is competitive with state-of-the-art simulation codes while offering enhanced flexibility through its Python interface and integration with high-level computational backends.

Abstract Image

一个开放源代码的反微磁学节点有限差分代码
我们介绍了NeuralMag,一个灵活、高性能的开源Python微磁模拟库。NeuralMag利用现代机器学习框架,如PyTorch和JAX,在各种并行硬件(包括cpu, gpu和tpu)上执行高效的张量操作。该库实现了一种新颖的节点有限差分离散化方案,在不增加计算复杂度的情况下,比传统的有限差分方法提供了更高的精度。由于其自动微分功能,NeuralMag特别适合于解决逆问题,特别是那些与时间相关的目标。性能基准测试表明,NeuralMag与最先进的仿真代码相比具有竞争力,同时通过Python接口和与高级计算后端集成提供了增强的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信