{"title":"Effects of Distributed Friction During Sliding Touch.","authors":"MacKenzie Harnett, Paras Kumar, Rebecca F Friesen","doi":"10.1109/TOH.2025.3581009","DOIUrl":null,"url":null,"abstract":"<p><p>Friction modulation allows for a range of different tactile sensations and textures to be simulated on flat touchscreens, yet is largely unable to render fundamental interactions such as tracing the edge of a line or shape; an edge consists of straddling two different states, yet friction modulating screens traditionally apply only one friction force at a time to the whole finger. In order to expand the range of sensations rendered via friction modulation, in this paper we explore the possibility of applying spatial feedback on the fingerpad via differing friction forces on flat touchscreens. To this end, we fabricated six distinct flat surfaces with different spatial distributions of friction and calculated deformation of the fingerpad skin in response to motion along these physical samples. In our study, friction changes that occur sequentially along the sliding direction introduced little transitory spatial warping such as compression or stretching to the fingerpad, suggesting limited perceptual differences in comparison to 'classic' friction modulation. Distributing friction across the direction of motion, however, showed pattern-dependent shearing of the fingertip skin, opening avenues for new sensations and illusions heretofore unachievable on flat touchscreen surfaces.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2025.3581009","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Friction modulation allows for a range of different tactile sensations and textures to be simulated on flat touchscreens, yet is largely unable to render fundamental interactions such as tracing the edge of a line or shape; an edge consists of straddling two different states, yet friction modulating screens traditionally apply only one friction force at a time to the whole finger. In order to expand the range of sensations rendered via friction modulation, in this paper we explore the possibility of applying spatial feedback on the fingerpad via differing friction forces on flat touchscreens. To this end, we fabricated six distinct flat surfaces with different spatial distributions of friction and calculated deformation of the fingerpad skin in response to motion along these physical samples. In our study, friction changes that occur sequentially along the sliding direction introduced little transitory spatial warping such as compression or stretching to the fingerpad, suggesting limited perceptual differences in comparison to 'classic' friction modulation. Distributing friction across the direction of motion, however, showed pattern-dependent shearing of the fingertip skin, opening avenues for new sensations and illusions heretofore unachievable on flat touchscreen surfaces.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.