Zihui Zhao , Lei Li , Wenduan Li , Yuanyuan Tian , Yan Zhang , Yong Zhang , Maria Itria Ibba , Zhonghu He , Yuanfeng Hao , Wenfei Tian
{"title":"Rapid evaluation of Farinograph and Extensograph characteristics in bread wheat using near-infrared spectroscopy and chemometrics","authors":"Zihui Zhao , Lei Li , Wenduan Li , Yuanyuan Tian , Yan Zhang , Yong Zhang , Maria Itria Ibba , Zhonghu He , Yuanfeng Hao , Wenfei Tian","doi":"10.1016/j.foodres.2025.116915","DOIUrl":null,"url":null,"abstract":"<div><div>Bread wheat (<em>Triticum aestivum</em> L.) plays a vital role in global food security and processing. Understanding the rheological properties of dough is crucial in the food industry and wheat breeding programs to select high-quality varieties. Traditional tests such as Farinograph and Extensograph are essential, but labor-intensive and impractical for high-throughput screening. Near-infrared spectroscopy is a rapid and cost-effective alternative to grain quality assessment. This study aimed to develop calibration models for key rheological properties of dough in wheat using a dataset of 1082 representative samples. Various spectral pre-processing, variable selection, and regression algorithms have been employed for model calibration. The partial least squares regression model for Farinograph water absorption demonstrated strong predictive capabilities (R<sup>2</sup>c = 0.92, R<sup>2</sup>v = 0.90, and RPD = 3.20), while qualitative analysis was feasible for other characteristics with high accuracy from 80.23 % to 94.27 %. The developed NIR models provide an efficient method for evaluating wheat quality in food processing and wheat breeding.</div></div>","PeriodicalId":323,"journal":{"name":"Food Research International","volume":"218 ","pages":"Article 116915"},"PeriodicalIF":7.0000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Research International","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963996925012530","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bread wheat (Triticum aestivum L.) plays a vital role in global food security and processing. Understanding the rheological properties of dough is crucial in the food industry and wheat breeding programs to select high-quality varieties. Traditional tests such as Farinograph and Extensograph are essential, but labor-intensive and impractical for high-throughput screening. Near-infrared spectroscopy is a rapid and cost-effective alternative to grain quality assessment. This study aimed to develop calibration models for key rheological properties of dough in wheat using a dataset of 1082 representative samples. Various spectral pre-processing, variable selection, and regression algorithms have been employed for model calibration. The partial least squares regression model for Farinograph water absorption demonstrated strong predictive capabilities (R2c = 0.92, R2v = 0.90, and RPD = 3.20), while qualitative analysis was feasible for other characteristics with high accuracy from 80.23 % to 94.27 %. The developed NIR models provide an efficient method for evaluating wheat quality in food processing and wheat breeding.
期刊介绍:
Food Research International serves as a rapid dissemination platform for significant and impactful research in food science, technology, engineering, and nutrition. The journal focuses on publishing novel, high-quality, and high-impact review papers, original research papers, and letters to the editors across various disciplines in the science and technology of food. Additionally, it follows a policy of publishing special issues on topical and emergent subjects in food research or related areas. Selected, peer-reviewed papers from scientific meetings, workshops, and conferences on the science, technology, and engineering of foods are also featured in special issues.