{"title":"Enhancing procedure quality: Advanced language tools for identifying ambiguity and high-potential violation triggers","authors":"Karl Johnson , Caroline Morais , Edoardo Patelli","doi":"10.1016/j.ress.2025.111308","DOIUrl":null,"url":null,"abstract":"<div><div>In high-risk industrial environments, the clarity and accuracy of Standard Operating Procedures (SOPs) are critical for ensuring safety and regulatory compliance. The presence of ambiguities in SOPs can lead to misunderstandings, errors, and increased risks. While violations of procedural directives can significantly contribute to catastrophic outcomes. This study introduces the development of sophisticated tools utilizing both rule-based and machine learning methodologies in Natural Language Processing (NLP) specifically designed to detect ambiguities and identify high-risk steps prone to non-malevolent violation in procedural documentation. By addressing these linguistic and procedural discrepancies, we aim to enhance the clarity and applicability of SOPs, ultimately improving adherence and reducing risks in complex operational settings. The tools leverages a blend of linguistic rules to systematically identify and categorize ambiguities, and machine learning techniques with historical data to identify procedural directives with high-risk potential when violated. This enhances the precision and practical application of SOPs in sectors such as nuclear, oil and gas, and chemical processing. Initial tests demonstrate the tools’ effectiveness and promising applicability. This approach not only aids in refining SOPs but also contributes to the broader objective of enhancing operational safety and efficiency. The research underscores the importance of integrating advanced NLP techniques with traditional safety management practices to address the inherent challenges of procedural documentation in complex industrial settings.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"264 ","pages":"Article 111308"},"PeriodicalIF":9.4000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832025005095","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
In high-risk industrial environments, the clarity and accuracy of Standard Operating Procedures (SOPs) are critical for ensuring safety and regulatory compliance. The presence of ambiguities in SOPs can lead to misunderstandings, errors, and increased risks. While violations of procedural directives can significantly contribute to catastrophic outcomes. This study introduces the development of sophisticated tools utilizing both rule-based and machine learning methodologies in Natural Language Processing (NLP) specifically designed to detect ambiguities and identify high-risk steps prone to non-malevolent violation in procedural documentation. By addressing these linguistic and procedural discrepancies, we aim to enhance the clarity and applicability of SOPs, ultimately improving adherence and reducing risks in complex operational settings. The tools leverages a blend of linguistic rules to systematically identify and categorize ambiguities, and machine learning techniques with historical data to identify procedural directives with high-risk potential when violated. This enhances the precision and practical application of SOPs in sectors such as nuclear, oil and gas, and chemical processing. Initial tests demonstrate the tools’ effectiveness and promising applicability. This approach not only aids in refining SOPs but also contributes to the broader objective of enhancing operational safety and efficiency. The research underscores the importance of integrating advanced NLP techniques with traditional safety management practices to address the inherent challenges of procedural documentation in complex industrial settings.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.