Gabrielle Byrd , Alice Goldstein-Plesser , Jo Nyffeler , Clinton M. Willis , Anna Fisher , William K. Boyes , Joshua A. Harrill
{"title":"Assessing the effects of silver nanoparticles on ARPE-19 cells via high-throughput phenotypic profiling with the Cell Painting assay","authors":"Gabrielle Byrd , Alice Goldstein-Plesser , Jo Nyffeler , Clinton M. Willis , Anna Fisher , William K. Boyes , Joshua A. Harrill","doi":"10.1016/j.taap.2025.117444","DOIUrl":null,"url":null,"abstract":"<div><div>Increasing commercialization of silver nanoparticles (AgNPs) has resulted in elevated opportunity for human exposure and outpaced traditional risk assessment approaches that rely on in vivo testing. Therefore, efficient methods are needed to evaluate potential hazards of AgNPs. Previous studies identified particle size and surface charge as determinants of AgNP toxicity, which has primarily been attributed to reactive oxygen species generation. Those studies have generally focused on cytotoxicity or targeted cellular effects, potentially missing critical sub-cytotoxic effects. Here, high throughput phenotypic profiling (HTPP) with the Cell Painting assay was used to characterize the effects of 12 distinct AgNPs (≤ 30 μg/mL) on organelle morphology in human retinal pigmented epithelial cells (ARPE-19). Three coatings (branched polyethyleneimine, polyvinylpyrrolidone, citrate) were selected for their distinct surface charges and tested at 4 different sizes (40, 60, 80, 100 nm) to determine the effects of these properties on toxicity. HTPP was conducted in conjunction with a transcriptomic profiling experiment involving 60 nm particles of all coating types. This facilitated evaluation of mechanisms of action underlying morphological effects observed using HTPP. A cell viability and apoptosis assay was also run in parallel and used to exclude cytotoxic treatments from phenotypic and transcriptomic analyses. HTPP revealed concentration-dependent emergence of sub-cytotoxic phenotypic profiles that clustered by coating type, suggesting surface charge to be more influential than particle size in the determination of AgNP toxicity. The transcriptomic data highlighted oxidative stress and cell cycle alterations as fundamental underlying toxicity mechanisms of AgNPs.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"502 ","pages":"Article 117444"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X25002200","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing commercialization of silver nanoparticles (AgNPs) has resulted in elevated opportunity for human exposure and outpaced traditional risk assessment approaches that rely on in vivo testing. Therefore, efficient methods are needed to evaluate potential hazards of AgNPs. Previous studies identified particle size and surface charge as determinants of AgNP toxicity, which has primarily been attributed to reactive oxygen species generation. Those studies have generally focused on cytotoxicity or targeted cellular effects, potentially missing critical sub-cytotoxic effects. Here, high throughput phenotypic profiling (HTPP) with the Cell Painting assay was used to characterize the effects of 12 distinct AgNPs (≤ 30 μg/mL) on organelle morphology in human retinal pigmented epithelial cells (ARPE-19). Three coatings (branched polyethyleneimine, polyvinylpyrrolidone, citrate) were selected for their distinct surface charges and tested at 4 different sizes (40, 60, 80, 100 nm) to determine the effects of these properties on toxicity. HTPP was conducted in conjunction with a transcriptomic profiling experiment involving 60 nm particles of all coating types. This facilitated evaluation of mechanisms of action underlying morphological effects observed using HTPP. A cell viability and apoptosis assay was also run in parallel and used to exclude cytotoxic treatments from phenotypic and transcriptomic analyses. HTPP revealed concentration-dependent emergence of sub-cytotoxic phenotypic profiles that clustered by coating type, suggesting surface charge to be more influential than particle size in the determination of AgNP toxicity. The transcriptomic data highlighted oxidative stress and cell cycle alterations as fundamental underlying toxicity mechanisms of AgNPs.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.