Janhavi Nistane, Rohan Datta, Young Joo Lee, Harikrishna Sahu, Seung Soon Jang, Ryan Lively, Rampi Ramprasad
{"title":"Polymer design for solvent separations by integrating simulations, experiments and known physics via machine learning","authors":"Janhavi Nistane, Rohan Datta, Young Joo Lee, Harikrishna Sahu, Seung Soon Jang, Ryan Lively, Rampi Ramprasad","doi":"10.1038/s41524-025-01681-8","DOIUrl":null,"url":null,"abstract":"<p>This study guides the discovery of sustainable high-performance polymer membranes for organic binary solvent separations. We focus on solvent diffusivity in polymers, a key factor in quantifying solvent transport. Traditional experimental and computational methods for determining diffusivity are time- and resource-intensive, while current machine learning (ML) models often lack accuracy outside their training domains. To overcome this, we fuse experimental and simulated diffusivity data to train physics-enforced multi-task ML models, achieving more robust predictions in unseen chemical spaces and outperforming single-task models in data-limited scenarios. Next, we address the challenge of identifying optimal membranes for a model toluene-heptane separation, identifying polyvinyl chloride (PVC) as the optimal membrane among 13,000 polymers, consistent with literature findings, thereby validating our methodology. Expanding our search, we screen 1 million publicly available and 7 million chemically recyclable polymers, identifying greener halogen-free alternatives to PVC. This capability is expected to advance membrane design for solvent separations.</p><figure></figure>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"240 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01681-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study guides the discovery of sustainable high-performance polymer membranes for organic binary solvent separations. We focus on solvent diffusivity in polymers, a key factor in quantifying solvent transport. Traditional experimental and computational methods for determining diffusivity are time- and resource-intensive, while current machine learning (ML) models often lack accuracy outside their training domains. To overcome this, we fuse experimental and simulated diffusivity data to train physics-enforced multi-task ML models, achieving more robust predictions in unseen chemical spaces and outperforming single-task models in data-limited scenarios. Next, we address the challenge of identifying optimal membranes for a model toluene-heptane separation, identifying polyvinyl chloride (PVC) as the optimal membrane among 13,000 polymers, consistent with literature findings, thereby validating our methodology. Expanding our search, we screen 1 million publicly available and 7 million chemically recyclable polymers, identifying greener halogen-free alternatives to PVC. This capability is expected to advance membrane design for solvent separations.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.