Noisy Error-Adaptive Weighting Strategy for Accelerating ILC in Discrete-Time Systems

IF 9.4 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Zeyi Zhang;Dong Shen;Hao Jiang;Samer S. Saab;Xinghuo Yu
{"title":"Noisy Error-Adaptive Weighting Strategy for Accelerating ILC in Discrete-Time Systems","authors":"Zeyi Zhang;Dong Shen;Hao Jiang;Samer S. Saab;Xinghuo Yu","doi":"10.1109/TCYB.2025.3576270","DOIUrl":null,"url":null,"abstract":"This article proposes a strategy to accelerate the convergence of iterative learning control (ILC) while maintaining robustness against stochastic noise. The strategy adaptively reweights the error signals used in conventional ILC schemes, casting greater influence to larger errors during input updates, thereby accelerating the correction of noisy inputs and improving overall convergence behavior. Furthermore, to mitigate the impact of noise-dominated small errors on weight computation, a saturation mechanism is introduced. A convergence theorem is established to characterize how the saturation parameters affect the asymptotic convergence of the input deviation-induced errors. Simulation and experimental results demonstrate that incorporating this strategy consistently improves convergence speed while maintaining tracking accuracy across different ILC implementations.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 8","pages":"3935-3947"},"PeriodicalIF":9.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11039704/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes a strategy to accelerate the convergence of iterative learning control (ILC) while maintaining robustness against stochastic noise. The strategy adaptively reweights the error signals used in conventional ILC schemes, casting greater influence to larger errors during input updates, thereby accelerating the correction of noisy inputs and improving overall convergence behavior. Furthermore, to mitigate the impact of noise-dominated small errors on weight computation, a saturation mechanism is introduced. A convergence theorem is established to characterize how the saturation parameters affect the asymptotic convergence of the input deviation-induced errors. Simulation and experimental results demonstrate that incorporating this strategy consistently improves convergence speed while maintaining tracking accuracy across different ILC implementations.
离散系统中加速ILC的噪声误差自适应加权策略
本文提出了一种加速迭代学习控制收敛的策略,同时保持对随机噪声的鲁棒性。该策略自适应地重新调整传统ILC方案中使用的误差信号,在输入更新过程中对较大的误差施加更大的影响,从而加速对噪声输入的校正并改善整体收敛行为。此外,为了减轻以噪声为主的小误差对权重计算的影响,引入了一种饱和机制。建立了一个收敛定理,描述了饱和参数对输入偏差误差渐近收敛的影响。仿真和实验结果表明,采用该策略可以持续提高收敛速度,同时保持不同ILC实现的跟踪精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信