Nicole A Malofsky, Swayashreyee B Dhungel, Megan E Pask, Frederick R Haselton
{"title":"Single-Sample Melt-Based Screening for Rifampicin Susceptibility in the Emerging Mutation Hotspot at <i>rpoB</i> Codon 491.","authors":"Nicole A Malofsky, Swayashreyee B Dhungel, Megan E Pask, Frederick R Haselton","doi":"10.1021/acsinfecdis.5c00150","DOIUrl":null,"url":null,"abstract":"<p><p>Based on sequencing data, mutations at <i>rpoB</i> codon 491 of<i>Mycobacterium tuberculosis</i>are associated with rifampicin resistance, but current commercial and WHO-endorsed genotypic tests fail to detect them. As a result, resistant infections go untreated, driving transmission and multidrug resistance. A real-time PCR assay by André et al. specifically screens for I491F but omits other codon 491 mutations. To address this gap, a single-sample screening method using asymmetric PCR followed by melt analysis was developed for the three sequence-identified variants, I491F/N/M. Each sample contained a melt probe matching the susceptible sequence, which, after asymmetric PCR spanning codon 491, hybridized with the excess strand to form a duplex. The duplex's melt temperature (<i>T</i><sub>m</sub>) was then measured. To enable single-sample classification, each reaction also included double-stranded L-DNA identical to the probe and wild-type PCR product duplex. Susceptibility was determined by the within-sample <i>T</i><sub>m</sub> difference between the probe-product and L-DNA duplexes. The approach was evaluated and compared to the André assay across two calibrated PCR instruments using synthetic <i>rpoB</i> wild-type and variant sequences. As expected, the André assay distinguished wild-type from I491F samples but misclassified I491N and I491M samples based on multisample <i>T</i><sub>m</sub> comparison. In contrast, our single-sample classification strategy used within-sample <i>T</i><sub>m</sub> differences, classifying samples as rifampicin-susceptible when the within-sample <i>T</i><sub>m</sub> difference was less than 0.83 °C. With this approach, the method achieved 100% sensitivity and 100% specificity across both PCR instruments. Although demonstrated for <i>rpoB</i> codon 491, this assay design is readily adaptable to any other sequence-identified, clinically significant mutation hotspot.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.5c00150","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Based on sequencing data, mutations at rpoB codon 491 ofMycobacterium tuberculosisare associated with rifampicin resistance, but current commercial and WHO-endorsed genotypic tests fail to detect them. As a result, resistant infections go untreated, driving transmission and multidrug resistance. A real-time PCR assay by André et al. specifically screens for I491F but omits other codon 491 mutations. To address this gap, a single-sample screening method using asymmetric PCR followed by melt analysis was developed for the three sequence-identified variants, I491F/N/M. Each sample contained a melt probe matching the susceptible sequence, which, after asymmetric PCR spanning codon 491, hybridized with the excess strand to form a duplex. The duplex's melt temperature (Tm) was then measured. To enable single-sample classification, each reaction also included double-stranded L-DNA identical to the probe and wild-type PCR product duplex. Susceptibility was determined by the within-sample Tm difference between the probe-product and L-DNA duplexes. The approach was evaluated and compared to the André assay across two calibrated PCR instruments using synthetic rpoB wild-type and variant sequences. As expected, the André assay distinguished wild-type from I491F samples but misclassified I491N and I491M samples based on multisample Tm comparison. In contrast, our single-sample classification strategy used within-sample Tm differences, classifying samples as rifampicin-susceptible when the within-sample Tm difference was less than 0.83 °C. With this approach, the method achieved 100% sensitivity and 100% specificity across both PCR instruments. Although demonstrated for rpoB codon 491, this assay design is readily adaptable to any other sequence-identified, clinically significant mutation hotspot.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.