Temperature-dependence of current gain and turn-on voltages of GaAs-based HBTs with different base layers grown by MOCVD

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhen Liu , ShuQing Deng , JianPing Liu , Yong Huang , Hui Yang
{"title":"Temperature-dependence of current gain and turn-on voltages of GaAs-based HBTs with different base layers grown by MOCVD","authors":"Zhen Liu ,&nbsp;ShuQing Deng ,&nbsp;JianPing Liu ,&nbsp;Yong Huang ,&nbsp;Hui Yang","doi":"10.1016/j.sse.2025.109180","DOIUrl":null,"url":null,"abstract":"<div><div>Temperature-dependence of GaAs-based heterojunction bipolar transistors with GaAs, InGaAs and GaAsSb base layers were investigated. HBT with InGaAs base was found to have the best thermal stability of current gain of <em>Δβ/ΔT</em> = −0.0828/K. Both valence-band offset (<em>ΔE<sub>V</sub></em>) of emitter–base junction and defects activation energy (<em>ΔE<sub>a</sub></em>) of base layer were accounted for the low <em>Δβ/ΔT</em> coefficient by fitting the relationship between <em>1/β</em> and <em>1/T</em> using a proposed model. In addition, lower turn-on voltages of 1.038 V and 1.036 V were extracted for HBTs with narrower bandgap InGaAs and GaAsSb bases, respectively, in contrast to 1.075 V in HBT with GaAs base.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"229 ","pages":"Article 109180"},"PeriodicalIF":1.4000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003811012500125X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Temperature-dependence of GaAs-based heterojunction bipolar transistors with GaAs, InGaAs and GaAsSb base layers were investigated. HBT with InGaAs base was found to have the best thermal stability of current gain of Δβ/ΔT = −0.0828/K. Both valence-band offset (ΔEV) of emitter–base junction and defects activation energy (ΔEa) of base layer were accounted for the low Δβ/ΔT coefficient by fitting the relationship between 1/β and 1/T using a proposed model. In addition, lower turn-on voltages of 1.038 V and 1.036 V were extracted for HBTs with narrower bandgap InGaAs and GaAsSb bases, respectively, in contrast to 1.075 V in HBT with GaAs base.
MOCVD生长不同基层gaas基hbt电流增益和导通电压的温度依赖性
研究了具有GaAs、InGaAs和GaAsSb基材层的GaAs基异质结双极晶体管的温度依赖性。以InGaAs为基底的HBT具有最佳的热稳定性,电流增益为Δβ/ΔT =−0.0828/K。利用该模型拟合1/β与1/T之间的关系,得到了发射基结的价带偏置(ΔEV)和基层的缺陷活化能(ΔEa)较低的Δβ/ΔT系数。此外,与具有GaAs基的HBT的1.075 V相比,具有较窄带隙的InGaAs基和GaAsSb基的HBT分别获得了较低的1.038 V和1.036 V的导通电压。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信