Junxi Yu , Yuan Zhang , Songjie Yang , Chunlin Song , Shiyao Xu , Boyuan Huang , Qingyuan Wang , Jiangyu Li
{"title":"Self-powered tunable photodetection via flexoelectric engineering of single-phase 2HMoS2","authors":"Junxi Yu , Yuan Zhang , Songjie Yang , Chunlin Song , Shiyao Xu , Boyuan Huang , Qingyuan Wang , Jiangyu Li","doi":"10.1016/j.jmat.2025.101103","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional (2D) molybdenum disulfide (MoS<sub>2</sub>) has shown considerable potential for photodetection, yet existing MoS<sub>2</sub>-based photodetectors require either external voltage bias or complex heterojunctions. In this work, we present a new device concept based on flexoelectric engineering of bulk photovoltaic effect (BPVE) of 2H<img>MoS<sub>2</sub>, simplifying the device configuration considerably while enhancing its self-powered photodetection performance. By introducing a strain gradient in the suspended 2H<img>MoS<sub>2</sub>, we break its inversion symmetry, resulting in BPVE in the otherwise centrosymmetric system. The significant flexoelectric polarization induced also facilitates efficient photocarrier separation, leading to a 41-fold enhancement in short-circuit photocurrent under a strain gradient of <span><math><mn>0.95</mn><mspace></mspace><msup><mi>μm</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. Furthermore, the flexoelectric-engineered photodetector can be dynamically tuned <em>via</em> air pressure, enabling multilevel photoconductance and achieving a responsivity of 191 mA/W. This performance surpasses existing self-powered MoS<sub>2</sub>-based photodetectors reported in literature, offering a strategy for enhanced photodetection.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 6","pages":"Article 101103"},"PeriodicalIF":9.6000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352847825000930","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional (2D) molybdenum disulfide (MoS2) has shown considerable potential for photodetection, yet existing MoS2-based photodetectors require either external voltage bias or complex heterojunctions. In this work, we present a new device concept based on flexoelectric engineering of bulk photovoltaic effect (BPVE) of 2HMoS2, simplifying the device configuration considerably while enhancing its self-powered photodetection performance. By introducing a strain gradient in the suspended 2HMoS2, we break its inversion symmetry, resulting in BPVE in the otherwise centrosymmetric system. The significant flexoelectric polarization induced also facilitates efficient photocarrier separation, leading to a 41-fold enhancement in short-circuit photocurrent under a strain gradient of . Furthermore, the flexoelectric-engineered photodetector can be dynamically tuned via air pressure, enabling multilevel photoconductance and achieving a responsivity of 191 mA/W. This performance surpasses existing self-powered MoS2-based photodetectors reported in literature, offering a strategy for enhanced photodetection.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.