First-principles Hubbard parameters with automated and reproducible workflows

IF 11.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Lorenzo Bastonero, Cristiano Malica, Eric Macke, Marnik Bercx, Sebastiaan Huber, Iurii Timrov, Nicola Marzari
{"title":"First-principles Hubbard parameters with automated and reproducible workflows","authors":"Lorenzo Bastonero, Cristiano Malica, Eric Macke, Marnik Bercx, Sebastiaan Huber, Iurii Timrov, Nicola Marzari","doi":"10.1038/s41524-025-01685-4","DOIUrl":null,"url":null,"abstract":"<p>We introduce an automated, flexible framework (aiida-hubbard) to self-consistently calculate Hubbard <i>U</i> and <i>V</i> parameters from first-principles. By leveraging density-functional perturbation theory, the computation of the Hubbard parameters is efficiently parallelized using multiple concurrent and inexpensive primitive cell calculations. Furthermore, the intersite <i>V</i> parameters are defined on-the-fly during the iterative procedure to account for atomic relaxations and diverse coordination environments. We devise a novel, code-agnostic data structure to store Hubbard related information together with the atomistic structure, to enhance the reproducibility of Hubbard-corrected calculations. We demonstrate the scalability and reliability of the framework by computing in high-throughput fashion the self-consistent onsite <i>U</i> and intersite <i>V</i> parameters for 115 Li-containing bulk solids with up to 32 atoms in the unit cell. Our analysis of the Hubbard parameters calculated reveals a significant correlation of the onsite <i>U</i> values on the oxidation state and coordination environment of the atom on which the Hubbard manifold is centered, while intersite <i>V</i> values exhibit a general decay with increasing interatomic distance. We find, e.g., that the numerical values of <i>U</i> for the 3d orbitals of Fe and Mn can vary up to 3 eV and 6 eV, respectively; their distribution is characterized by typical shifts of about 0.5 eV and 1.0 eV upon change in oxidation state, or local coordination environment. For the intersite <i>V</i> a narrower spread is found, with values ranging between 0.2 eV and 1.6 eV when considering transition metal and oxygen interactions. This framework paves the way for the exploration of redox materials chemistry and high-throughput screening of <i>d</i> and <i>f</i> compounds across diverse research areas, including the discovery and design of novel energy storage materials, as well as other technologically-relevant applications.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"25 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01685-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce an automated, flexible framework (aiida-hubbard) to self-consistently calculate Hubbard U and V parameters from first-principles. By leveraging density-functional perturbation theory, the computation of the Hubbard parameters is efficiently parallelized using multiple concurrent and inexpensive primitive cell calculations. Furthermore, the intersite V parameters are defined on-the-fly during the iterative procedure to account for atomic relaxations and diverse coordination environments. We devise a novel, code-agnostic data structure to store Hubbard related information together with the atomistic structure, to enhance the reproducibility of Hubbard-corrected calculations. We demonstrate the scalability and reliability of the framework by computing in high-throughput fashion the self-consistent onsite U and intersite V parameters for 115 Li-containing bulk solids with up to 32 atoms in the unit cell. Our analysis of the Hubbard parameters calculated reveals a significant correlation of the onsite U values on the oxidation state and coordination environment of the atom on which the Hubbard manifold is centered, while intersite V values exhibit a general decay with increasing interatomic distance. We find, e.g., that the numerical values of U for the 3d orbitals of Fe and Mn can vary up to 3 eV and 6 eV, respectively; their distribution is characterized by typical shifts of about 0.5 eV and 1.0 eV upon change in oxidation state, or local coordination environment. For the intersite V a narrower spread is found, with values ranging between 0.2 eV and 1.6 eV when considering transition metal and oxygen interactions. This framework paves the way for the exploration of redox materials chemistry and high-throughput screening of d and f compounds across diverse research areas, including the discovery and design of novel energy storage materials, as well as other technologically-relevant applications.

Abstract Image

第一原则哈伯德参数与自动化和可重复的工作流程
我们引入了一个自动化的、灵活的框架(aiida-hubbard)来自一致地从第一性原理计算Hubbard U和V参数。利用密度泛函微扰理论,利用多个并发且廉价的原始单元计算有效地并行化了Hubbard参数的计算。此外,在迭代过程中动态定义了场间V参数,以考虑原子弛豫和不同的配位环境。我们设计了一种新颖的、与代码无关的数据结构,将Hubbard相关信息与原子结构存储在一起,以提高Hubbard校正计算的可重复性。我们通过以高通量方式计算115个含锂块状固体的自一致现场U和场间V参数,证明了该框架的可扩展性和可靠性,在单元胞中有多达32个原子。我们对计算得到的Hubbard参数的分析表明,Hubbard流形为中心的原子的氧化态和配位环境与现场U值有显著的相关性,而场间V值随着原子间距离的增加呈现出普遍的衰减。例如,我们发现Fe和Mn的三维轨道U的数值可以分别变化到3ev和6ev;随着氧化态或局部配位环境的变化,其分布特征为0.5 eV和1.0 eV左右的典型位移。在考虑过渡金属与氧相互作用的情况下,对于过渡金属间的V分布较窄,其值在0.2 eV到1.6 eV之间。该框架为在不同研究领域探索氧化还原材料化学和高通量筛选d和f化合物铺平了道路,包括发现和设计新型储能材料,以及其他技术相关应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信