Massive discovery of crystal structures across dimensionalities by leveraging vector quantization

IF 11.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
ZiJie Qiu, Luozhijie Jin, Zijian Du, Hongyu Chen, Guanyao Mao, Yan Cen, Siqi Sun, Yongfeng Mei, Hao Zhang
{"title":"Massive discovery of crystal structures across dimensionalities by leveraging vector quantization","authors":"ZiJie Qiu, Luozhijie Jin, Zijian Du, Hongyu Chen, Guanyao Mao, Yan Cen, Siqi Sun, Yongfeng Mei, Hao Zhang","doi":"10.1038/s41524-025-01613-6","DOIUrl":null,"url":null,"abstract":"<p>Discovering new functional crystalline materials through computational methods remains a challenge in materials science. We introduce VQCrystal, a deep learning framework leveraging discrete latent representations to overcome key limitations to crystal generation and inverse design. VQCrystal employs a hierarchical VQ-VAE architecture to encode global and atom-level crystal features, coupled with an inter-atomic potential model and a genetic algorithm to realize property-targeted inverse design. Benchmark evaluations on diverse datasets demonstrate VQCrystal’s capabilities in representation learning and crystal discovery. We further apply VQCrystal for both 3D and 2D material design. For 3D materials, the density-functional theory validation confirmed that 62.22% of bandgaps and 99% of formation energies of the 56 filtered materials matched the target range. 437 generated materials were validated as existing entries in the full MP-20 database outside the training set. For 2D materials, 73.91% of 23 filtered structures exhibited high stability with formation energies below -1 eV/atom.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"18 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01613-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Discovering new functional crystalline materials through computational methods remains a challenge in materials science. We introduce VQCrystal, a deep learning framework leveraging discrete latent representations to overcome key limitations to crystal generation and inverse design. VQCrystal employs a hierarchical VQ-VAE architecture to encode global and atom-level crystal features, coupled with an inter-atomic potential model and a genetic algorithm to realize property-targeted inverse design. Benchmark evaluations on diverse datasets demonstrate VQCrystal’s capabilities in representation learning and crystal discovery. We further apply VQCrystal for both 3D and 2D material design. For 3D materials, the density-functional theory validation confirmed that 62.22% of bandgaps and 99% of formation energies of the 56 filtered materials matched the target range. 437 generated materials were validated as existing entries in the full MP-20 database outside the training set. For 2D materials, 73.91% of 23 filtered structures exhibited high stability with formation energies below -1 eV/atom.

Abstract Image

利用矢量量化,大规模发现跨维度的晶体结构
通过计算方法发现新的功能晶体材料仍然是材料科学中的一个挑战。我们介绍了VQCrystal,这是一个利用离散潜在表示来克服晶体生成和逆设计的关键限制的深度学习框架。VQCrystal采用分层VQ-VAE架构对全局和原子级晶体特征进行编码,并结合原子间势模型和遗传算法实现针对属性的逆设计。对不同数据集的基准评估证明了VQCrystal在表示学习和晶体发现方面的能力。我们进一步将VQCrystal应用于3D和2D材料设计。对于3D材料,密度-功能理论验证证实,56种过滤材料的62.22%的带隙和99%的地层能符合目标范围。437个生成的材料被验证为完整MP-20数据库中训练集之外的现有条目。对于二维材料,23种过滤结构中73.91%具有高稳定性,形成能低于-1 eV/原子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信