Jing Rou Lee , Mohd Sharizal Abdul Aziz , Chu Yee Khor , Mohammad Hafifi Hafiz Ishaik , Janter Pangaduan Simanjuntak , Yong Jie Wong
{"title":"Thermal-mechanical analysis of copper pillar pitch size during reflow soldering assembly process","authors":"Jing Rou Lee , Mohd Sharizal Abdul Aziz , Chu Yee Khor , Mohammad Hafifi Hafiz Ishaik , Janter Pangaduan Simanjuntak , Yong Jie Wong","doi":"10.1016/j.microrel.2025.115827","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the effect of pitch sizes on the thermal and mechanical performance of the copper (Cu) pillar bumps during the reflow soldering assembly process. The simulated reflow temperature is compared with the experimental result, which is in good agreement. The simulated flow field reveals that radiation is the dominant heat transfer mode in the reflow oven. Moreover, the heat transfer is affected by airflow circulation, leading to uneven temperature distribution and temperature deviations between the bumps. The simulation results demonstrate that overall reflow temperature, the temperature difference between peak temperatures of bumps, deformation, and stress-strain distribution significantly impact Cu pillar bump reliability. Pitch size of 0.40 mm yielded minor total deformation and the lowest stress distribution. Thus, this study provides a comprehensive guide for monitoring the temperature distributions on Cu pillar bumps and their capability to resist deformation and stress strain, which are crucial criteria for achieving high-quality bonding and reliable electronic products during the reflow soldering assembly process.</div></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"172 ","pages":"Article 115827"},"PeriodicalIF":1.9000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271425002409","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effect of pitch sizes on the thermal and mechanical performance of the copper (Cu) pillar bumps during the reflow soldering assembly process. The simulated reflow temperature is compared with the experimental result, which is in good agreement. The simulated flow field reveals that radiation is the dominant heat transfer mode in the reflow oven. Moreover, the heat transfer is affected by airflow circulation, leading to uneven temperature distribution and temperature deviations between the bumps. The simulation results demonstrate that overall reflow temperature, the temperature difference between peak temperatures of bumps, deformation, and stress-strain distribution significantly impact Cu pillar bump reliability. Pitch size of 0.40 mm yielded minor total deformation and the lowest stress distribution. Thus, this study provides a comprehensive guide for monitoring the temperature distributions on Cu pillar bumps and their capability to resist deformation and stress strain, which are crucial criteria for achieving high-quality bonding and reliable electronic products during the reflow soldering assembly process.
期刊介绍:
Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged.
Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.