Deep learning-based channel prediction for TDD MIMO systems with imperfect channel reciprocity

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Heecheol Yang
{"title":"Deep learning-based channel prediction for TDD MIMO systems with imperfect channel reciprocity","authors":"Heecheol Yang","doi":"10.1016/j.icte.2025.04.011","DOIUrl":null,"url":null,"abstract":"<div><div>In wireless communication systems, accurate channel state information plays a fundamental role in achieving optimal transmission efficiency at the base station (BS). We introduce a deep learning-based channel prediction designed to address the challenges posed by imperfect channel reciprocity in time-division duplex multiple-input multiple-output systems. We propose two models that not only facilitate accurate channel prediction but also perform channel calibration that can alleviate the impact of imperfect channel reciprocity between BS and users. We evaluate the performance through the simulations in line-of-sight and non-line-of-sight scenarios, demonstrating efficacy in enhancing the accuracy of predicted future downlink channels.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"11 3","pages":"Pages 590-596"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959525000566","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In wireless communication systems, accurate channel state information plays a fundamental role in achieving optimal transmission efficiency at the base station (BS). We introduce a deep learning-based channel prediction designed to address the challenges posed by imperfect channel reciprocity in time-division duplex multiple-input multiple-output systems. We propose two models that not only facilitate accurate channel prediction but also perform channel calibration that can alleviate the impact of imperfect channel reciprocity between BS and users. We evaluate the performance through the simulations in line-of-sight and non-line-of-sight scenarios, demonstrating efficacy in enhancing the accuracy of predicted future downlink channels.
基于深度学习的不完全信道互易TDD MIMO系统信道预测
在无线通信系统中,准确的信道状态信息对基站实现最佳传输效率起着至关重要的作用。我们引入了一种基于深度学习的信道预测,旨在解决时分双工多输入多输出系统中信道互易性不完美带来的挑战。我们提出了两个模型,不仅有助于准确的信道预测,而且还可以进行信道校准,以减轻BS和用户之间不完善的信道互惠的影响。我们通过在视距和非视距场景下的模拟来评估性能,证明了在提高预测未来下行信道准确性方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信