A comprehensive multi-agent deep reinforcement learning framework with adaptive interaction strategies for contention window optimization in IEEE 802.11 Wireless LANs

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yi-Hao Tu, Yi-Wei Ma
{"title":"A comprehensive multi-agent deep reinforcement learning framework with adaptive interaction strategies for contention window optimization in IEEE 802.11 Wireless LANs","authors":"Yi-Hao Tu,&nbsp;Yi-Wei Ma","doi":"10.1016/j.icte.2025.01.010","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces the Multi-Agent, Multi-Parameter, Interaction-Driven Contention Window Optimization (M2I-CWO) algorithm, a novel Multi-Agent Deep Reinforcement Learning (MADRL) framework designed to optimize multiple CW parameters in IEEE 802.11 Wireless LANs. Unlike single-parameter or specialized multi-agent methods, M2I-CWO employs a Dueling-DQN architecture and an Adaptive Interaction Reward Function—spanning independent, cooperative, competitive, and mixed modes—and accommodates Hierarchical Multi-Agent System (HMAS) or Federated RL (FRL) for further scalability. First, multiple CW parameters are simultaneously adjusted to enhance collision management. Second, M2I-CWO consistently achieves throughput improvements in both static and dynamic scenarios. Extensive results confirm M2I-CWO's superiority in efficiency and adaptability.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"11 3","pages":"Pages 473-480"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959525000104","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces the Multi-Agent, Multi-Parameter, Interaction-Driven Contention Window Optimization (M2I-CWO) algorithm, a novel Multi-Agent Deep Reinforcement Learning (MADRL) framework designed to optimize multiple CW parameters in IEEE 802.11 Wireless LANs. Unlike single-parameter or specialized multi-agent methods, M2I-CWO employs a Dueling-DQN architecture and an Adaptive Interaction Reward Function—spanning independent, cooperative, competitive, and mixed modes—and accommodates Hierarchical Multi-Agent System (HMAS) or Federated RL (FRL) for further scalability. First, multiple CW parameters are simultaneously adjusted to enhance collision management. Second, M2I-CWO consistently achieves throughput improvements in both static and dynamic scenarios. Extensive results confirm M2I-CWO's superiority in efficiency and adaptability.
基于自适应交互策略的IEEE 802.11无线局域网竞争窗口优化综合多智能体深度强化学习框架
本研究介绍了多智能体、多参数、交互驱动的争用窗口优化(M2I-CWO)算法,这是一种新颖的多智能体深度强化学习(MADRL)框架,旨在优化IEEE 802.11无线局域网中的多个CW参数。与单参数或专门的多智能体方法不同,M2I-CWO采用duduing - dqn架构和自适应交互奖励功能(跨越独立、合作、竞争和混合模式),并适应分层多智能体系统(HMAS)或联邦RL (FRL),以实现进一步的可扩展性。首先,同时调整多个连续波参数,加强碰撞管理。其次,M2I-CWO在静态和动态场景中始终实现吞吐量改进。广泛的研究结果证实了M2I-CWO在效率和适应性方面的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信