Adversarial defense for battery state-of-health prediction models

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Masoumeh Mohammadi, Insoo Sohn
{"title":"Adversarial defense for battery state-of-health prediction models","authors":"Masoumeh Mohammadi,&nbsp;Insoo Sohn","doi":"10.1016/j.icte.2025.03.011","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the challenge of state of health (SOH) estimation for lithium-ion batteries using a generative graphical approach under adversarial conditions. We analyze the impact of adversarial data poisoning attacks on SOH prediction models, specifically employing the fast gradient sign method (FGSM) and iterative fast gradient sign method (IFGSM). To enhance model robustness, we propose a two-defense strategy against such attacks. The effectiveness of these defenses is evaluated using error metrics such as root-mean-square error (RMSE), mean absolute error (MAE), and mean-square error (MSE). Results indicate that the proposed strategy significantly improves the model’s ability to accurately predict SOH, even in the presence of malicious data.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"11 3","pages":"Pages 436-441"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959525000451","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the challenge of state of health (SOH) estimation for lithium-ion batteries using a generative graphical approach under adversarial conditions. We analyze the impact of adversarial data poisoning attacks on SOH prediction models, specifically employing the fast gradient sign method (FGSM) and iterative fast gradient sign method (IFGSM). To enhance model robustness, we propose a two-defense strategy against such attacks. The effectiveness of these defenses is evaluated using error metrics such as root-mean-square error (RMSE), mean absolute error (MAE), and mean-square error (MSE). Results indicate that the proposed strategy significantly improves the model’s ability to accurately predict SOH, even in the presence of malicious data.
电池健康状态预测模型的对抗性防御
本研究使用生成图形方法解决了对抗条件下锂离子电池健康状态(SOH)估计的挑战。我们分析了对抗性数据中毒攻击对SOH预测模型的影响,具体采用快速梯度符号法(FGSM)和迭代快速梯度符号法(IFGSM)。为了增强模型的鲁棒性,我们提出了一种针对此类攻击的双重防御策略。这些防御的有效性是使用误差度量来评估的,比如均方根误差(RMSE)、平均绝对误差(MAE)和均方误差(MSE)。结果表明,即使存在恶意数据,所提出的策略也显著提高了模型准确预测SOH的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信