Yali Jia , Tristan T. Hormel , Thomas S. Hwang , An-Lun Wu , Guangru B. Liang , Yukun Guo , Xiang Wei , Shuibin Ni , Yifan Jian , J. Peter Campbell , Steven T. Bailey , John C. Morrison , David Huang
{"title":"Widefield OCT angiography","authors":"Yali Jia , Tristan T. Hormel , Thomas S. Hwang , An-Lun Wu , Guangru B. Liang , Yukun Guo , Xiang Wei , Shuibin Ni , Yifan Jian , J. Peter Campbell , Steven T. Bailey , John C. Morrison , David Huang","doi":"10.1016/j.preteyeres.2025.101378","DOIUrl":null,"url":null,"abstract":"<div><div>Optical coherence tomography angiography (OCTA) is a volumetric, non-invasive, high-resolution vascular imaging modality capable of acquiring highly detailed visualizations of retinal microvasculature. It has become an important tool for diagnosis and prognosis in prevalent diseases and pathologies such as diabetic retinopathy, retinopathy of prematurity, and vein occlusions, as well as more rare conditions, including inherited retinal dystrophies. It is also useful for measuring treatment response and assessing which patients would benefit from treatment. Unlike dye-based angiography, OCTA eliminates risks such as anaphylaxis. It also often outperforms fundus photography in feature detection. However, conventional OCTA imaging has been limited by its small field of view, which restricts simultaneous visualization of the posterior pole and peripheral retina, causing single images to potentially miss widely spaced critical biomarkers and pathological features. Recent technological advances in widefield OCTA have addressed this limitation, extending the field of view to the mid-periphery and beyond. This breakthrough enhances the simultaneous detection of macular and peripheral retinal pathology and significantly broadens OCTA's diagnostic and research applications. This review explores the technical innovations enabling widefield OCTA and highlights its clinical utility across various conditions, emphasizing its growing importance as a powerful tool in ophthalmic practice and research.</div></div>","PeriodicalId":21159,"journal":{"name":"Progress in Retinal and Eye Research","volume":"107 ","pages":"Article 101378"},"PeriodicalIF":14.7000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Retinal and Eye Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350946225000515","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Optical coherence tomography angiography (OCTA) is a volumetric, non-invasive, high-resolution vascular imaging modality capable of acquiring highly detailed visualizations of retinal microvasculature. It has become an important tool for diagnosis and prognosis in prevalent diseases and pathologies such as diabetic retinopathy, retinopathy of prematurity, and vein occlusions, as well as more rare conditions, including inherited retinal dystrophies. It is also useful for measuring treatment response and assessing which patients would benefit from treatment. Unlike dye-based angiography, OCTA eliminates risks such as anaphylaxis. It also often outperforms fundus photography in feature detection. However, conventional OCTA imaging has been limited by its small field of view, which restricts simultaneous visualization of the posterior pole and peripheral retina, causing single images to potentially miss widely spaced critical biomarkers and pathological features. Recent technological advances in widefield OCTA have addressed this limitation, extending the field of view to the mid-periphery and beyond. This breakthrough enhances the simultaneous detection of macular and peripheral retinal pathology and significantly broadens OCTA's diagnostic and research applications. This review explores the technical innovations enabling widefield OCTA and highlights its clinical utility across various conditions, emphasizing its growing importance as a powerful tool in ophthalmic practice and research.
期刊介绍:
Progress in Retinal and Eye Research is a Reviews-only journal. By invitation, leading experts write on basic and clinical aspects of the eye in a style appealing to molecular biologists, neuroscientists and physiologists, as well as to vision researchers and ophthalmologists.
The journal covers all aspects of eye research, including topics pertaining to the retina and pigment epithelial layer, cornea, tears, lacrimal glands, aqueous humour, iris, ciliary body, trabeculum, lens, vitreous humour and diseases such as dry-eye, inflammation, keratoconus, corneal dystrophy, glaucoma and cataract.