Defect-engineered core-shell structured NaNbO3-based energy storage ceramics

IF 9.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Qinpeng Dong, Yu Zhang, Yue Pan, Jiangping Huang, Xiuli Chen, Xu Li, Huanfu Zhou
{"title":"Defect-engineered core-shell structured NaNbO3-based energy storage ceramics","authors":"Qinpeng Dong, Yu Zhang, Yue Pan, Jiangping Huang, Xiuli Chen, Xu Li, Huanfu Zhou","doi":"10.1016/j.jmat.2025.101097","DOIUrl":null,"url":null,"abstract":"As research on lead−free energy storage materials advances, high−performance substrates and their modification methods have been continuously explored. In NaNbO<sub>3</sub>–based energy storage ceramics, low polarization limits the enhancement of energy storage performance. This study utilized defect engineering design to prepare (1–<em>x</em>)NaNbO<sub>3</sub>-<em>x</em>Sr(Fe<sub>1/3</sub>Sb<sub>2/3</sub>)O<sub>3</sub> ceramics with core–shell structure through a Fe/Sb dual oxidation state variable element synergistic regulation strategy. The goal is to enhance Δ<em>P</em> and optimize <em>E</em><sub>b</sub> of ceramics by adjusting the content of vacancy defects and phase structure, so that ceramics can achieving high energy storage characteristics. A <em>W</em><sub>rec</sub> of 6.4 J/cm<sup>3</sup> and <em>η</em> of 80% at 645 kV/cm were achieved in NaNbO<sub>3</sub>–based ceramic. Additionally, based on this study, we performed a detailed analysis of the origin of high Δ<em>P</em> and the influence of defect structures on <em>E</em><sub>b</sub>, with the aim of providing a new reference for development and research of high–performance lead–free energy storage ceramics.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"225 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmat.2025.101097","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

As research on lead−free energy storage materials advances, high−performance substrates and their modification methods have been continuously explored. In NaNbO3–based energy storage ceramics, low polarization limits the enhancement of energy storage performance. This study utilized defect engineering design to prepare (1–x)NaNbO3-xSr(Fe1/3Sb2/3)O3 ceramics with core–shell structure through a Fe/Sb dual oxidation state variable element synergistic regulation strategy. The goal is to enhance ΔP and optimize Eb of ceramics by adjusting the content of vacancy defects and phase structure, so that ceramics can achieving high energy storage characteristics. A Wrec of 6.4 J/cm3 and η of 80% at 645 kV/cm were achieved in NaNbO3–based ceramic. Additionally, based on this study, we performed a detailed analysis of the origin of high ΔP and the influence of defect structures on Eb, with the aim of providing a new reference for development and research of high–performance lead–free energy storage ceramics.

Abstract Image

缺陷工程核壳结构nanbo3储能陶瓷
随着无铅储能材料研究的深入,高性能衬底及其改性方法不断得到探索。在基于nanbo3的储能陶瓷中,低极化限制了储能性能的提高。本研究利用缺陷工程设计,通过Fe/Sb双氧化态变元协同调控策略制备了具有核壳结构的(1-x)NaNbO3-xSr(Fe1/3Sb2/3)O3陶瓷。目标是通过调整空位缺陷的含量和相结构来增强ΔP和优化陶瓷的Eb,使陶瓷达到高储能特性。在645 kV/cm下,纳米bo3基陶瓷的Wrec为6.4 J/cm3, η为80%。此外,在本研究的基础上,我们详细分析了高ΔP的来源以及缺陷结构对Eb的影响,旨在为高性能无铅储能陶瓷的开发和研究提供新的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materiomics
Journal of Materiomics Materials Science-Metals and Alloys
CiteScore
14.30
自引率
6.40%
发文量
331
审稿时长
37 days
期刊介绍: The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信