{"title":"Machine learning on multiple topological materials datasets","authors":"Yuqing He, Pierre-Paul De Breuck, Hongming Weng, Matteo Giantomassi, Gian-Marco Rignanese","doi":"10.1038/s41524-025-01687-2","DOIUrl":null,"url":null,"abstract":"<p>A dataset of 35,608 materials with their topological properties is constructed by combining the density functional theory (DFT) results of Materiae and the Topological Materials Database. Thanks to this, machine-learning approaches are developed to categorize materials into five distinct topological types, with the XGBoost model achieving an impressive 85.2% classification accuracy. By conducting generalization tests on different sub-datasets, differences are identified between the original datasets in terms of topological types, chemical elements, unknown magnetic compounds, and feature space coverage. Their impact on model performance is analyzed. Turning to the simpler binary classification between trivial insulators and nontrivial topological materials, three different approaches are also tested. Key characteristics influencing material topology are identified, with the maximum packing efficiency and the fraction of <i>p</i> valence electrons being highlighted as critical features.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"10 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01687-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A dataset of 35,608 materials with their topological properties is constructed by combining the density functional theory (DFT) results of Materiae and the Topological Materials Database. Thanks to this, machine-learning approaches are developed to categorize materials into five distinct topological types, with the XGBoost model achieving an impressive 85.2% classification accuracy. By conducting generalization tests on different sub-datasets, differences are identified between the original datasets in terms of topological types, chemical elements, unknown magnetic compounds, and feature space coverage. Their impact on model performance is analyzed. Turning to the simpler binary classification between trivial insulators and nontrivial topological materials, three different approaches are also tested. Key characteristics influencing material topology are identified, with the maximum packing efficiency and the fraction of p valence electrons being highlighted as critical features.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.